全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

微/纳米马达在生物传感中的应用

DOI: 10.7536/PC140547, PP. 1712-1719

Keywords: 微/纳米马达,微型传感器,生物传感,自主运动,快速分析,实时检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

微/纳米马达是近年来发展的一种可自主运动的新型微/纳米材料,它制备简单、形态多样、可批量化生产,已逐渐应用于生物样品分析及药物运输等领域。由于生物样品成分复杂,传统检测常常需要多步清洗和分离,操作繁琐、耗时较长。微/纳米马达具有自主运动的特性,通过表面生物功能化,可制备成动态的微型生物传感器,实现多种生物分子如核酸、蛋白质、糖蛋白等的实时、快速和灵敏检测。本文总结了近几年微/纳米马达的发展及其在生物传感中的应用,并展望了其在生物分析中的应用前景。

References

[1]  周继平(Zhou J P). 医学信息手术学分册(Medical Information Operations Sciences Fascicule),2006,19(2): 60.
[2]  吴魏霞(Wu W X). 北京印刷学院学报(Journal of Beijing Institute of Graphic Communication), 2012,20(2): 64.
[3]  王志松(Wang Z S). 自然杂志(Chinese Journal of Nature),2006,28(3): 160.
[4]  Wilson D A, Nolte R J M, van Hest J C M. Nat. Chem., 2012, 4: 268.
[5]  Simmchen J, Baeza A, Ruiz D, Esplandiu M J, Vallet-Regí M. Small, 2012, 8: 2053.
[6]  Gao W, Sattayasamitsathit S, Uygun A, Pei A, Ponedal A, Wang J. Nanoscale, 2012, 4: 2447.
[7]  Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J. J. Am. Chem. Soc., 2012, 134: 15217.
[8]  Guix M, Orozco J, Garcia M, Gao W, Sattayasamitsathit S, MerkociA, Escarpa A, Wang J. ACS Nano, 2012, 6: 4445.
[9]  Mei Y F, Solovev A A, Sanchez S, Schmidt O G. Chem. Soc. Rev., 2011, 40: 2109.
[10]  Tottori S, Zhang L, Qiu F M, Krawczyk K K, Franco-Obregón A, Nelson B J. Adv. Mater., 2012, 24: 811.
[11]  Ghosh A, Fischer P. Nano Lett., 2009, 9: 2243.
[12]  Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. Nanoscale, 2013, 5: 1273.
[13]  Burdick J, Laocharoensuk R, Wheat P M, Posner J D, Wang J. J. Am. Chem. Soc., 2008, 130: 8164.
[14]  Zhang L, Petit T, Lu Y, Kratochvil B E, Peyer K E, Pei R, Lou J, Nelson B J. ACS Nano, 2010, 4: 6228.
[15]  Gao W, Sattayasamitsathit S, Orozco J, Wang J. J. Am. Chem. Soc., 2011, 133: 11862.
[16]  Hong Y Y, Diaz M, Cordova-Figueroa U M, Sen A. Adv. Funct. Mater., 2010, 20: 1568.
[17]  McDermott J J, Kar A, Daher M, Klara S, Wang G, Sen A, Velegol D. Langmuir, 2012, 28: 15491.
[18]  Piunno P A E, Krull U J, Hudson R H E, Damha M J, Cohen H. Anal. Chem., 1995, 67: 2635.
[19]  Ferguson J A, Boles T C, Adams C P, Walt D R. Nat. Biotechnol., 1996, 14: 1681.
[20]  Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G U, Wang J. Nano Lett., 2011, 11: 2083.
[21]  Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt O G. ACS Nano, 2012, 6: 1751.
[22]  Wu Z G, Wu Y J, He W P, Lin X K, Sun J M, He Q. Angew. Chem. Int. Ed., 2013, 52: 7000.
[23]  Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Erik Shipton, Fullerton E E, Zhang L F, Lauga E, Wang J. Small, 2012, 8: 460.
[24]  Kagan D, Benchimol M J, Claussen J C, Chuluun-Erdene E, Esener S, Wang J. Angew. Chem. Int. Ed., 2012, 51: 7519.
[25]  Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. J. Am. Chem. Soc., 2006, 128: 14881.
[26]  Gao W, Sattayasamitsathit S, Manesh K M, Weihs D, Wang J. J. Am. Chem. Soc., 2010, 132: 14403.
[27]  Demirok U K, Laocharoensuk R, Manesh K M, Wang J. Angew. Chem. Int. Ed., 2008, 47: 9349.
[28]  Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A. Angew. Chem. Int. Ed., 2011, 123: 9546.
[29]  Gao W, Pei A, Feng X M, Hennessy C, Wang J. J. Am. Chem. Soc., 2013, 135: 998.
[30]  Huang C X, Shen X T. Chem. Commun., 2014, 50: 2646.
[31]  Zhang L, Abbott J J, Dong L, Peyer K E, Kratochvil B E, Zhang H, Bergeles C, Nelson B J. Nano Lett., 2009, 9: 3663.
[32]  Mirkovic T, Foo M L, Arsenault A C, Fournier-Bidoz S, Zacharia N S, Ozin G A. Nat. Nanotech., 2007: 565.
[33]  Dong B, Zhou T, Zhang H, Li C Y. ACS Nano, 2013, 7: 5192.
[34]  Sundararajan S, Lammert P E, Zudans A W, Crespi V H, Sen A. Nano Lett., 2008, 8: 1271.
[35]  Wu J, Balasubramanian S, Kagan D, Manesh K M, Campuzano S, Wang J. Nat. Commun., 2010, 1: 36.
[36]  Wang J, Gao W. ACS Nano, 2012, 6: 5745.
[37]  Baraban L, Harazim S M, Sanchez S, Schmidt O G. Angew. Chem. Int. Ed., 2013, 52: 5552.
[38]  Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131: 12082.
[39]  Zhao G J, Seah T H, Pumera M. Chem. Eur. J., 2011, 17: 12020.
[40]  Cobbold R S C. New York: Oxford University Press , 2007.
[41]  Wang W, Castro L A, Hoyos M, Mallouk T E. ACS Nano, 2012, 6: 6122.
[42]  Garcia-Gradilla X, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F, Wang J. ACS Nano, 2013, 7: 9232.
[43]  Gibbs J G, Zhao Y P. Appl. Phys. Lett., 2009, 94: 163104.
[44]  Mei Y F, Huang G S, Solovev A A, Urena E B, Monch I, Ding F, Reindl T, Fu R K Y, Chu P K, Schmidt O G. Adv. Mater., 2008, 20: 4085.
[45]  Solovev A A, Mei Y F, Urena E B, Huang G S, Schmidt O G. Small, 2009, 5: 1688.
[46]  Manesh K M, Yuan R, Clark M, Kagan D, Balasubramanian S, Wang J. ACS Nano, 2010, 4: 1799.
[47]  Liu R, Sen A. J. Am. Chem. Soc., 2011, 133: 20064.
[48]  Ibele M, Mallouk T E, Sen A. Angew. Chem. Int. Ed., 2009, 48: 3308.
[49]  Jones P H, Palmisano F, Bonaccorso F, Gucciardi P G, Calogero G, Ferrari A C, Marago O M. ACS Nano, 2009, 3: 3077.
[50]  Ghosh A, Fischer P. Nano Lett., 2009, 9: 2243.
[51]  Pak O S, Gao W, Wang J, Lauga E. Soft Matter, 2011, 7: 8169.
[52]  Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. J. Am. Chem. Soc., 2004, 126: 13424.
[53]  Gao W, Uygun A, Wang J. J. Am. Chem. Soc., 2012, 134: 897.
[54]  Gao W, Pei A, Dong R F, Wang J. J. Am. Chem. Soc., 2014, 136: 2276.
[55]  Gao W, Pei A, Wang J. ACS Nano, 2012, 6: 8432.
[56]  Mou F Z, Chen C R, Ma H R, Yin Y X, Wu Q Z, Guan J G. Angew. Chem. Int. Ed., 2013, 52: 1.
[57]  Orozco J, Cortés A, Cheng G Z, Sattayasamitsathit S, Gao W, Feng X M, Shen Y F, Wang J. J. Am. Chem. Soc., 2013, 135: 5336.
[58]  Campuzano S, Orozoc J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen J C, Merkoci A, Wang J. Nano Lett., 2012, 12: 396.
[59]  Wang Y, Fei S, Byun Y M, Lammert P E, Crespi V H, Sen A. J. Am. Chem. Soc., 2009, 131: 9926.
[60]  Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Anal. Chem., 2011, 83: 7962.
[61]  Wang J. Nucl. Acids. Res., 2000, 28: 3011.
[62]  Gooding J J. Electroanalysis, 2002, 14: 1149.
[63]  Okahata Y. J. Am. Chem. Soc., 1992, 114: 8299.
[64]  Duarte G R M, Price C W, Littlewood J L, Haverstick D M, Ferrance J P, Carrilho E, Landers J P. Analyst, 2010, 135: 531.
[65]  Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K. Small, 2008, 4: 410.
[66]  Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131: 12082.
[67]  Laurino P, Kikkeri R. Nano Lett., 2011, 11: 73.
[68]  Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci I H. Analyst, 2011, 136: 740.
[69]  Balasubramanian S, Kagan D, Hu C M J, Campuzano S, Lobo-Castanon M J, Lim N, Kang D Y, Zimmerman M, Zhang L F, Wang J. Angew. Chem. Int. Ed., 2011, 50: 4161.
[70]  Wang J. Biosens. Bioelectron., 2006, 21: 1887.
[71]  Wu J, Fu Z F, Yan F, Ju H X. TrAC-Trend. Anal. Chem., 2007, 26: 679.
[72]  Sergey M B, Wolfbeis O S. Chem. Rev., 2008, 108: 423.
[73]  García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, Merkoci A, Wang J. Nanoscale, 2013, 5: 1325.
[74]  Yu X P, Li Y N, Wu J, Ju H X. Anal. Chem., 2014, 86: 4501.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133