全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

离子掺杂氧化锌光催化纳米功能材料的制备及其应用

DOI: 10.7536/PC140452, PP. 1619-1632

Keywords: 氧化锌,离子掺杂,光催化,催化机理,光降解,抗菌性,制氢

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧化锌是一种氧化还原电位高、激子结合能大(~60meV)、物理和化学稳定性较好、廉价且无毒的半导体光催化剂。本文综述了掺杂氧化锌光催化剂的掺杂离子类型、制备方法、光催化效果及其作用机理。掺杂氧化锌的离子类型主要包括非金属离子单掺杂、金属离子(包括过渡金属离子和稀土金属离子)单掺杂和双离子共掺杂。离子掺杂后可在氧化锌晶格中引入更多的氧空穴或缺陷,为光致氧化反应提供更多的活性位点;或者引入杂质能级,扩大光吸收范围,增强可见光吸收能力。同时,掺杂的离子也可作为电子捕获中心,阻止光生电子-空穴对的复合,从而提高氧化锌光催化剂的性能。此外,文中还对掺杂氧化锌光催化剂在有机污染物降解、抗菌和光催化制氢等方面的应用进行了系统概述,并对其发展趋势作了展望。

References

[1]  Drogui P, Daghrir R, Robert D. Ind. Eng. Chem. Res., 2013, 52: 3581.
[2]  Kamat P V. J. Phys. Chem. C, 2012, 116: 11849.
[3]  Fu H G, Tian C G, Zhang Q, Wu A P, Jiang M J, Liang Z L, Jiang B J. Chem. Comm., 2012, 48: 2858.
[4]  Duan X W, Wang G Z, Wang H Q, Wang Y Q, Shen C, Cai W P. CrystEngComm, 2010, 12: 2821.
[5]  Ekambarama S, Iikubo Y, Kudo A. J. Alloys Compd., 2007, 433: 237.
[6]  Etacheri V, Roshan R, Kumar V. ACS Appl. Mater. Interfaces, 2012, 4: 2717.
[7]  Zhou X M, Liu G, Yu J G, Fan W D. J. Mater. Chem., 2012, 22: 21337.
[8]  Gu C D, Cheng C, Huang H Y, Wong T L, Wang N, Zhang T Y. Cryst. Growth Des., 2009, 9: 3278.
[9]  Liu H R, Shao G X, Zhao J F, Zhang Z X, Zhang Y, Liang J, Liu X G, Jia H S, Xu B S. J. Phys. Chem. C, 2012, 116: 16182.
[10]  Xiao Q, Zhang J, Xiao C, Tan X K. Mater. Sci. Eng. B, 2007, 142: 121.
[11]  Xiao Q, Ouyang L L. J. Alloy Compd., 2009, 479: L4.
[12]  Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293: 269.
[13]  Yang X Y, Wolcott A, Wang G M, Sobo A, Fitzmorris C R, Qian F, Zhang Z J, Li Y. Nano Lett., 2009, 9: 2331.
[14]  Lin Y G, Hsu Y K, Chen Y C, Chen L C, Chen S Y, Chen K H. Nanoscale, 2012, 4: 6515.
[15]  Kim S, Park H, Nam G, Yoon H, Leem J Y. J. Sol-Gel Sci. Technol., 2013, 67: 580.
[16]  Gao J H, Zhao Q, Sun Y H, Li G, Zhang J M, Yu D P. Nanoscale Res. Lett., 2011, 6: 45.
[17]  Shen G Z, Cho J H, Yoo J K, Yi G C, Lee C J. J. Phys. Chem. B, 2005, 109: 5491.
[18]  Choi Y J, Park H H. J. Mater. Chem. C, 2014, 2: 98.
[19]  Qin H C, Li W Y, Xia Y J, He T. ACS Appl. Mater. Interfaces, 2011, 3: 3152.
[20]  Bai H W, Liu Z Y, Sun D L. Chem. Asian J., 2012, 7: 1772.
[21]  Sun S B, Chang X T, Li X J, Li Z J. Ceram. Int., 2013, 39: 5197.
[22]  Zong X, Sun C H, Yu H, Chen Z G, Xing Z, Ye D L, Lu G Q, Li X Y, Wang L Z. J. Phys. Chem. C, 2013, 117: 4937.
[23]  Yu Z B, Yin L C, Xie Y P, Liu G, Ma X L, Cheng H M. J. Colloid Interf. Sci., 2013, 400: 18.
[24]  Liu S W, Li C, Yu J G, Xiang Q J. CrystEngComm, 2011, 13: 2533.
[25]  Ouyang H B, Huang J F, Li C Y, Cao L Y, Fei J. Mater. Lett., 2013, 111: 217.
[26]  Zhang Y Y, Ram M K, Stefanakos E K, Goswami D Y. Surf. Coat. Technol., 2013, 217: 119.
[27]  Dong S H, Xu K J, Liu J C, Cui H W. Physic B, 2011, 406: 3609.
[28]  Ba-Abbad M M, Kadhum H A A, Mohamad A B, Takriff M S, Sopian K. Chemosphere, 2013, 91: 1604.
[29]  Mohana R, Krishnamoorthy K, Kim S J. Solid State Commun., 2012, 152: 375.
[30]  Jongnavakit P, Amornpitoksuk P, Suwanboon S, Ndiegec N. Appl. Surf. Sci., 2012, 258: 8192.
[31]  Carvalho H W P, Batista A P L, Hammer P, Ramalho T C. J. Hazard. Mater., 2010, 184: 273.
[32]  Donkovaa B, Dimitrova D, Kostadinov M, Mitkova E, Mehandjiev D. Mater. Chem. Phys., 2010, 123: 563.
[33]  Barick K C, Singh S, Aslam M, Bahadur D. Micropor. Mesopor. Mater., 2010, 134: 195.
[34]  Kaneva N V, Dimitrov D T, Dushkin C D. Appl. Surf. Sci., 2011, 257: 8113.
[35]  He R L, Hocking R K, Tsuzuki T. Mater. Chem. Phys., 2012, 132: 1035.
[36]  Hagfeldt A, Gratzel M. Chem. Rev., 1995, 95: 49.
[37]  Ullah R, Dutta J. J. Hazard. Mater., 2008, 156: 194.
[38]  Zhao J, Wang L, Yan X Q, Yang Y, Lei Y, Zhou J, Huang Y H, Gu Y S, Zhang Y. Mater. Res. Bull., 2011, 46: 1207.
[39]  Xu C, Cao L X, Su G, Liu W, Qu X F, Yu Y Q. J. Alloy. Compd., 2010, 497: 373.
[40]  Mahmood M A, Baruah S, Dutta J. Mater. Chem. Phys., 2011, 130: 531.
[41]  Lu Y C, Lin Y H, Xie T F, Shi S L, Wang D J, Fan H M. Nanoscale, 2012, 4: 6393.
[42]  Cai X Y, Cai Y, Liu Y J, Li H, Zhang F. J. Phys. Chem. Solids, 2013, 74: 1196.
[43]  Ranjit K T, Willner I, Bossmann S H, Braun A M. J. Catal., 2001, 204: 305.
[44]  Suwanboon S, Amornpitoksuk P, Sukolrat A, Muensit N. Ceram. Int., 2013, 39: 2811.
[45]  Zhou Y, Lu S X, Xua W G. Environ. Prog. Sust. Energy, 2009, 28: 226.
[46]  Saif M, Hafez H, Nabeel A I. Chemosphere, 2013, 90: 840.
[47]  Yousefi M, Amiri M, Azimirad R, Moshfegh A Z. J. Electroanal. Chem., 2011, 661: 106.
[48]  Khatamian M, Khandar A A, Divband B, Haghighi M, Ebrahimiasl S. J. Mol. Catal. A, 2012, 365: 120.
[49]  Liang C H, Li F B, Liu C S, Lu J L, Wang X G. Dyes Pigments, 2008, 76: 477.
[50]  Sin J C, Lam S M, Lee K T, Mohamed A R. J. Colloid Interface Sci., 2013, 401: 40.
[51]  Sin J C, Lam S M, Lee K T, Mohamed A R. Ceram. Int., 2013, 39: 5833.
[52]  Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Mater. Lett., 2013, 90: 83.
[53]  Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Ceram. Int., 2013, 39: S563.
[54]  Yayapao O, Thongtem T, Phuruangrat A, Thongtem S. J. Alloy. Compd., 2013, 576: 72.
[55]  Wu Y, Xing M, Tian B, Zhang J, Chen F. Chem. Eng. J., 2010, 162: 710.
[56]  Liu H, Wu Y, Zhang J. ACS Appl. Mater. Interface, 2011, 3: 1757.
[57]  Wang P, Yap P, Lim T. Appl. Catal. A, 2011, 399: 252.
[58]  Jia A, Liang X, Su Z, Zhu T, Liu S. J. Hazard. Mater., 2010, 178: 233.
[59]  He T O, Guo X L, Zhang K, Feng Y M, Wang X D. RSC Adv., 2014, 4: 5880.
[60]  傅天华(Fu T H), 高倩倩(Gao Q Q), 刘斐(Liu F), 代华均(Dai H J), 寇兴明(Kou X M). 催化学报(Chinese J. Catal.), 2010, 31: 797.
[61]  Xing M, Zhang J, Chen F, Tian B. Chem. Commm., 2011, 47: 4947.
[62]  Wang J P, Wang Z Y, Huang B B, Ma Y D, Liu Y Y, Qin X Y, Zhang X Y, Dai Y. ACS Appl. Mater. Interfaces, 2012, 4: 4024.
[63]  Shinde S S, Bhosale C H, Rajpure K Y. J. Photochem. Photobio. B, 2012, 113: 70.
[64]  Patil B A, Patil R K, Pardeshi K S. J. Solid State Chem., 2011, 184: 3273.
[65]  Patil B A, Patil R K, Pardeshi K S. J. Hazard. Mater., 2010, 183: 315.
[66]  Sin J C, Lam S M, Lee K T, Mohamed A R. Ceram. Int., 2014, 40: 5431.
[67]  ?kte A. N. Appl. Catal. A, 2014, 475: 27.
[68]  Herring P N. Panchakarla S L, El-Shall S M. Langmuir, 2014, 30: 2230.
[69]  Lu Y B, Dai Y, Wei W, Zhu Y T, Huang B B. ChemPhysChem, 2013, 14: 3916.
[70]  Gu Z, Han Y, Pan F, Wang X, Weng D, Zhou S. Mater. Sci. Forum., 2009, 610/613: 229.
[71]  Raghupathi K R, Koodali R T, Manna A C. Langmuir, 2011, 27: 4020.
[72]  Dutta K R, Sharma K P, Bhargava R, Kumar N, Pandey C A. J. Phys. Chem. B, 2010, 114: 5594.
[73]  Kanade K G, Kale B B, Baeg J O, Lee S M, Lee C W, Moon S J, Chang H. Mater. Chem. Phys., 2007, 102: 98.
[74]  Liang X X, Sun M X, Li L C, Qiao R, Chen K Y, Xiao Q S, Xu F. Dalton Trans., 2012, 41: 2804.
[75]  Suwanboon S, Amornpitoksuk P, Bangrak P, Muensit N. Mater. Sci. Semicon. Proc., 2013, 16: 504.
[76]  温福宇(Wen F Y), 杨金辉(Yang J H), 宗旭(Zong X), 马艺(Ma Y), 徐倩(Xu Q), 马保军(Ma B J), 李灿(Li C). 化学进展(Progress in Chemistry), 2009, 21: 2285.
[77]  Bhirud P A, Sathaye D S, Waichal P R, Nikama K L, Kale B B. Green Chem., 2012, 14: 2790.
[78]  Gomathisankar P, Hachisuka K, Katsumata H, Suzuki T, Funasaka K, Kaneco S. ACS Sustainable Chem. Eng., 2013, 1: 982.
[79]  Yang K S, Dai Y, Huang B B. ChemPhysChem, 2009, 10: 2327.
[80]  Mapa M, Gopinath C S. Chem. Mater., 2009, 21: 351.
[81]  Palominos R A, Mondaca M A, Giraldo A, Penuela G, Moya P M, Mansilla H D. Catal. Today, 2009, 144: 100.
[82]  Cao X L, Zeng H B, Wang M, Xu X J, Fang M, Ji S L, Zhang L D. J. Phys. Chem. C, 2008, 112: 5267.
[83]  Xu L P, Hu Y L, Pelligra C, Chen C H, Jin L, Huang H, Sithambaram S, Aindow M, Joesten R, Suib L S. Chem. Mater., 2009, 21: 2875.
[84]  Zhang L Y, Yin L W, Wang C X, Lun N, Qi Y X. ACS Appl. Mater. Interface, 2010, 2: 1769.
[85]  Boppella R, Anjaneyulu K, Basak P, Manorama V S. J. Phys. Chem. C, 2013, 117: 4597.
[86]  Zhai T, Xie S L, Zhao Y F, Sun X F, Lu X H, Yu M H, Xu M, Xiao F M, Tong Y X. CrystEngComm, 2012, 14: 1850.
[87]  Deng Q, Duan X W, Ng H L D, Tang H B, Yang Y, Kong M G, Wu Z K, Cai W P, Wang G Z. ACS Appl. Mater. Interfaces, 2012, 4: 6030.
[88]  He W W, Kim H K, Wamer G W, Melka D, Callahan H J, Yin J J. J. Am. Chem. Soc., 2014, 136: 750.
[89]  Molinari A, Amadeli R, Antolini L, Maldotti A, Battioni P, Mansuy D. J. Mol. Catal. A, 2000, 158: 521.
[90]  Bessekhouad Y, Robert D, Weber J V. Catal. Today, 2005, 101: 315.
[91]  Wu W, Zhang S F, Xiao X H, Zhou J, Ren F, Sun L L, Jiang C Z. ACS Appl. Mater. Interfaces, 2012, 4: 3602.
[92]  Singh S, Barick K C, Bahadur D. J. Mater. Chem. A, 2013, 1: 3325.
[93]  Yu Q, Li H D, Wang Q L, Cheng S H, Li L A. Chem. Phys. Lett., 2012, 539/540: 74.
[94]  Zhang Y, Wu L, Li H, Xu J, Han L, Wang B, Tuo Z, Xie E. J. Alloy. Compd., 2009, 473: 319.
[95]  傅希贤(Fu X X), 杨秋华(Yang Q H), 桑丽霞(Sang L X).高等学校化学学报 (Chem. J. Chin. Univ.), 2002, 23: 283.
[96]  Wang C Y, Bettcher C, Bahnemann D W, Dohrmann J K. J. Mater. Chem., 2003, 13: 2322.
[97]  Ranjit K T, Willner I, Bossmann S H, Braun A M. Environ. Sci. Technol., 2001, 35: 1544.
[98]  Geburt S, Stichtenoth D, Muller S, Dewald W, Ronning C, Wang J, Jiao Y, Rao Y Y, Hark S K, Li Q. J. Nanosci. Nanotechnol., 2008, 8: 244.
[99]  Wu K P, Gu S L, Tang K, Ye J D, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R, Zheng Y D. J.Magn. Magn. Mater., 2012, 324: 1649.
[100]  Wu K P, Gu S L, Tang K, Zhu S M, Zhou M R, Huang Y R, Xu M X, Zhang R, Zheng Y D. Physica B, 2012, 407: 2429.
[101]  Dhiman P, Batoo K M, Kotnala R K, Chand J, Singh M. Appl. Surf. Sci., 2013, 287: 287.
[102]  Cao H W, Lu P F, Cong Z X, Yu Z Y, Cai N M, Zhang X L, Gao T, Wang S M. Thin Solid Films, 2013, 548: 480.
[103]  Vignesh K, Rajarajan M, Suganthi A. J. Ind. Eng. Chem., 2014, 20: 3826.
[104]  Zheng Z K, Huang B B, Meng X D, Wang J P, Wang S Y, Lou Z Z, Wang Z Y, Qin X Y, Zhang X Y, Dai Y. Chem. Comm., 2013, 49: 868.
[105]  Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D, Feng P Y. J. Am. Chem. Soc., 2010, 132: 11856.
[106]  Xie S F, Liu Y Y, Chen Z L, Chen X D, Wang X Y. RSC Adv., 2013, 3: 26080.
[107]  Kochuveedu T S, Jang Y H, Jang Y J, Kim D H. J. Mater. Chem. A, 2013, 1: 898.
[108]  Fu M, Li Y L, Wu S W, Lu P, Liu J, Dong F. Appl. Surf. Sci., 2011, 258: 1587.
[109]  Wu C L, Shen L, Yu H G, Zhang Y C, Huang Q L. Mater. Lett., 2012, 74: 236.
[110]  Xiao Q, Yao C. Mater. Chem. Phys., 2011, 130: 5.
[111]  Yang Y F, Li Y G, Zhu L P, He H P, Hu L, Huang J Y, Hu F C, He B, Ye Z Z. Nanoscale, 2013, 5: 10461.
[112]  Karunakaran C, Gomathisankar P, Manikandan G. Mater. Chem. Phys., 2010, 123: 585.
[113]  Korake P V, Dhabbe R S, Kadam A N, Gaikwad Y B, Garadkar K M. J. Photochem. Photobio. B, 2014, 130: 11.
[114]  Phuruangrat A, Yayapao O, Thongtemc T, Thongtema S. Superlattice. Microst., 2014, 67: 118.
[115]  Chavillon B, Cario L, Renaud A, Tessier F, Cheviré F, Boujtita M, Pellegrin Y, Blart E, Smeigh A, Hammarstr?m L, Odobel F, Jobic S. J. Am. Chem. Soc., 2012, 134: 464.
[116]  Geng B Y, Wang G Z, Jiang Z, Xie T, Sun S H, Meng G W, Zhang L D. Appl. Phys. Lett., 2003, 82: 4791.
[117]  Zhang Z, Yi J B, Ding J, Wong L M, Seng H L, Wang S J, Tao J G, Li G P, Xing G Z, Sum T C, Huan C H A, Wu T. J. Phys. Chem. C, 2008, 112: 9579.
[118]  Shi S B, Yang Y, Xu J P, Li L, Zhang X S, Hu G H, Dang Z M. J. Alloy. Compd., 2013, 576: 59.
[119]  Wu C L, Zhang Y C, Huang Q L. Mater. Lett., 2014, 119: 104.
[120]  Lu Y C, Lin Y H, Wang D J, Wang L L, Xie T F, Jiang T F. Nano Res., 2011, 4: 1144.
[121]  Lu Y C, Lin Y H, Xie T F, Chen L P, Yi S S, Wang D J. ACS Appl. Mater. Interfaces, 2013, 5: 4017.
[122]  Sina J C, Lama S M, Satoshi I, Leea K T, Mohamed R A. Appl. Catal. B, 2014, 148/149: 258.
[123]  曲敏丽(Qu M L), 姜万超(Jiang W C). 印染助剂(Textile Auxiliaries), 2004, 21: 45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133