全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

钙钛矿型氧化物的制备及其在固体氧化物燃料电池和金属-空气电池中的应用

DOI: 10.7536/PC140946, PP. 436-447

Keywords: 钙钛矿型氧化物,电极材料,制备,纳米结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对钙钛矿型氧化物的制备方法及其用于固体氧化物燃料电池(SOCFs)和金属-空气电池中的最新进展进行了较为全面的综述。制备钙钛矿型氧化物的方法有很多,包括盐分解法、固相法、共沉淀法、溶胶-凝胶法、水热法、反微乳法和模板法等。不同的制备方法可以得到各种形貌的钙钛矿型氧化物,如纳米立方体、纳米管、纳米棒、纳米片、纳米纤维和介孔结构。本文总结了这些制备方法的优点、缺点以及其适用的范围。作为一种重要的功能材料,钙钛矿型氧化物广泛应用于电极材料中。在SOCF中,重点介绍了阴极、阳极和电解质的研究现状,从电极材料的设计出发,比较了它们用于不同电极材料时的稳定性、电导率以及电催化活性,指出不足之处;在空气电极中,主要讨论了影响钙钛矿型氧化物氧的析出/还原催化活性和稳定性的因素。最后对钙钛矿型氧化物今后研究的方向和应用前景进行了预测。

References

[1]  Tanaka H, Misono M. Curr. Opin. Solid State Mater. Sci.,2001, 5: 381.
[2]  Chen X, Hu J, Chen Z, Feng X, Li A. Biosens. Bioelectron., 2009, 24: 3448.
[3]  Ablat A, Wu R, Mamat M, Li J, Muhemmed E, Si C, Wu R, Wang J, Qian H, Ibrahim K. Ceram. Int., 2014, 40: 14083.
[4]  Bhalla A S, Guo R, Roy R. Mater. Res. Innov., 2000, 4: 3.
[5]  Zhang S, Xia R, Shrout T R, Zang G, Wang J. J. Appl. Phys., 2006, 100: 104108.
[6]  Navale S C, Samuel V, Ravi V. Ceram. Int., 2006, 32: 847.
[7]  Jadhav A D, Gaikwad A B, Samuel V, Ravi V. Mater. Lett., 2007, 61: 2030.
[8]  Ma J, Theingi M, Chen Q, Wang W, Liu X, Zhang H. Ceram. Int., 2013, 39: 7839.
[9]  Veith M, Mathur S, Lecerf N, Huch V, Decker T. J. Sol-Gel Sci. Technol., 2000, 15: 145.
[10]  Chilibon I, Marat-Mendes J N. J. Sol-Gel Sci. Technol., 2012, 64: 571.
[11]  Shimizu Y, Uemura K, Matsuda H, Miura N, Yamazoe N. J. Electrochem. Soc., 1990, 137: 3430.
[12]  Zhu J, Yang X, Xu X, Wei K. J. Phys. Chem. C, 2007, 111: 1487.
[13]  Gra?a M P F, Prezas P R, Costa M M, Valente M A. J. Sol-Gel Sci. Technol., 2012, 64: 78.
[14]  Marin?ek M, Zupan K, Maèek J. J. Power Sources, 2002, 106: 178.
[15]  Chakroborty A, Das Sharma A, Maiti B, Maiti H S. Mater. Lett., 2002, 57: 862.
[16]  Deganello F, Marcì G, Deganello G. J. Eur. Ceram. Soc., 2009, 29: 439.
[17]  Jiang L, Liu W, Wu A, Xu J, Liu Q, Qian G, Zhang H. Ceram. Int., 2012, 38: 3667.
[18]  Benali A, Azizi S, Bejar M, Dhahri E, Gra?a M F P. Ceram. Int., 2014, 40: 14367.
[19]  Ji L, Zhang J, Gao Y, Li Y, Wang J. Ceram. Int., 2014, 40: 11419.
[20]  Yang X, Ren Z, Xu G, Chao C, Jiang S, Deng S, Shen G, Wei X, Han G. Ceram. Int., 2014, 40: 9663.
[21]  Guo H Y, Lin J G. J. Cryst. Growth, 2013, 364: 145.
[22]  Zhang J, Shen B, Zhai J, Yao X. Ceram. Int., 2013, 39: 5943.
[23]  Xu J, Liu J, Zhao Z, Zheng J, Zhang G, Duan A, Jiang G. Catal. Today, 2010, 153: 136.
[24]  Du Z, Zhao H, X Zhou, Z Xie, Zhang C. Int. J. Hydrogen Energy, 2013, 38: 1068.
[25]  Périllat-Merceroz C, Gauthier G, Roussel P, Huvé M, Gélin P, Vannier R N. Chem. Mater., 2011, 23: 1539.
[26]  Ma Q, Tietz F. Solid State Ionics, 2012, 225: 108.
[27]  Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116: 3801.
[28]  Chang Y M, Wu P W, Wu C Y, Hsien Y C. J. Power Sources, 2009, 189: 1003.
[29]  Zhuang S, Huang K, Huang C, Huang H, Liu S, Fan M. J. Power Sources, 2011, 196: 4019.
[30]  Deng J G, Zhang L, Dai H X, Au C T. Appl. Catal. A, 2009, 352: 43.
[31]  Hu J, Wang L, Shi L, H Huang. J. Power Sources, 2014, 269: 144.
[32]  Park H W, Lee D U, Zamani P, Seo M H, Nazar L F, Chen Z. Nano Energy, 2014, 10: 192.
[33]  Li S, Nechache R, Davalos I A V, Goupil G, Nikolova L, Nicklaus M, Laverdiere J, Ruediger A, Rosei F. J. Am. Ceram. Soc., 2013, 96: 3155.
[34]  Leng J, Li S, Wang Z, Xue Y, Xu D. Mater. Lett., 2010, 64: 1912.
[35]  Li S, Kato R, Wang Q, Yamanaka T, Takeguchi T, Ueda W. Appl. Catal. B: Environ., 2010, 93: 383.
[36]  Zhu X, Liu Z, Ming N. J. Mater. Chem., 2010, 20: 4015.
[37]  Wang J, Manivannan A, Wu N. Thin Solid Films, 2008, 517: 582.
[38]  Chen X, Tang Y, Fang L, Zhang H, Hu C, Zhou H. J. Mater. Sci.: Mater. Electron., 2012, 23: 1500.
[39]  Wang W, Bi J, Wu L, Li Z, Fu X. Scripta Mater., 2009, 60: 186.
[40]  Deng J, Zhang L, Dai H, Au C T. Catal. Lett., 2009, 130: 622.
[41]  Nakashima K, Kera M, Fujii I, Wada S. Ceram. Int., 2013, 39: 3231.
[42]  Lamminen J. J. Electrochem. Soc., 1991, 138: 905.
[43]  夏 熙(Xia X), 潘存信(Pan C X). 应用化学(Chinese Journal of Applied Chemistry), 2001, 18: 96.
[44]  Wang K, Wu X, Wu W, Li Y, Liao S. Ceram. Int., 2014, 40: 5997.
[45]  Farhadi S, Sepahvand S. J. Alloy. Compd., 2010, 489: 586.
[46]  Schaak R E, Mallouk T E. Chem. Mater., 2002, 14: 1455.
[47]  Rudskaya A G, Pustovaya L E, Kofanova N B, Kupriyanov M F. J. Struct. Chem., 2005, 46: 647.
[48]  Bhella S S, Kuti L M, Li Q, Thangadurai V. Dalton. Trans., 2009, 9520.
[49]  Isupova L. A, Alikina G M, Tsybulya S V, Boldyreva N N, Kryukova G N, Yakovleva I S, Isupov V P, Sadykov V A. Int. J. Inorg. Mater., 2001, 3: 559.
[50]  Wong Y J, Hassan J, Hashim M. J. Alloy. Compd., 2013, 571: 138.
[51]  Liu L, Zheng S, Huang R, Shi D, Huang Y, Wu S, Li Y, Fang L, Hu C. Adv. Powder Technol., 2013, 24: 908.
[52]  Basavalingu B, Vijaya Kumar M S, Girish H N, Yoda S. J. Alloy. Compd., 2013, 552: 382.
[53]  Sun Z, Pu Y, Dong Z, Hu Y, Liu X, Wang P, Ge M. Mater. Lett., 2014, 118: 1.
[54]  Fuentes S, Céspedes F, Padilla-Campos L, Diaz-Droguett D E. Ceram. Int., 2014, 40:4975.
[55]  Boukriba M, Sediri F, Gharbi N. Mater. Res. Bull., 2013, 48: 574.
[56]  Zhou Z, Guo L, Ye F. J. Alloy. Compd., 2013, 571: 123.
[57]  Wang S, Huang K, Zheng B, Zhang J, Feng S. Mater. Lett., 2013, 101: 86.
[58]  Makovec D, Gor?ak T, Zupan K, Lisjak D. J. Cryst. Growth, 2013, 375: 78.
[59]  Kumar R D, Jayavel R. Mater. Lett., 2013, 113: 210.
[60]  Zhang D, Shi F, Cheng J, Yang X, Yan E, Cao M. Ceram. Int., 2014, 40: 14279.
[61]  Wang J, Durussel A, Sandu C S, Sahini M G, He Z, Setter N. J. Cryst. Growth, 2012, 347: 1.
[62]  Ai Z, Lu G, Lee S. J. Alloy. Compd., 2014, 613: 260.
[63]  Xu G, Zhang Y, He W, Zhao Y, Liu Y, Shen G, Han G. J. Cryst. Growth, 2012, 346: 101.
[64]  Choi B H, Park S, Park B K, Chun H H, Kima Y, Mater. Res. Bull., 2013, 48: 3651.
[65]  Ji K, Dai H, Deng J, Song L, Xie S, Han W. J. Solid State Chem., 2013, 199: 164.
[66]  Wang Z, Zhu J, Xu W, Sui J, H Peng, Tang X. Mater. Chem. Phys., 2012, 135: 330.
[67]  Ponzoni C, Rosa R, Cannio M, Buscaglia V, E Finocchio, Nanni P, Leonelli C. J. Alloy. Compd.,2013, 558: 150.
[68]  López-Juárez R, Casta?eda-Guzmán R, Villafuerte-Castrejón M E. Ceram. Int., 2014, 40: 14757.
[69]  He H, Liu M, Dai H, Qiu W, Zi X. Catal. Today, 2007, 126: 290.
[70]  Aman D, Zaki T, Mikhail S, Selim S A. Catal. Today, 2011, 164: 209.
[71]  Zhao Y, L Xu, Mai L, Han C, An Q, Xu X, Liu X, Zhang Q. Proc. Natl. Acad. Sci. U.S.A., 2012, 109: 19569.
[72]  Shojaei S, Hassanzadeh-Tabrizi S A, Ghashangc M. Ceram. Int., 2014, 40: 9609.
[73]  Abazari R, Sanati S. Superlattice. Microst., 2013, 64: 148.
[74]  Wang Y, Ren J, Wang Y, Zhang F, Liu X, Guo Y, Lu G. J. Phys. Chem. C, 2008, 112: 15293.
[75]  Wang N, Yu X, Wang Y, Chu W, M Liu. Catal. Today, 2013, 212: 98.
[76]  Gao B, Deng J, Liu Y, Zhao Z, Li X, Wang Y, Dai H. Chinese J. Catal., 2013, 34: 2223.
[77]  Wang Y, Cui X, Li Y, Shu Z, Chen H, Shi J. Micropor. Mesopor. Mat., 2013, 176: 8.
[78]  Sadakane M, Horiuchi T, Kato N, Sasaki K, Ueda W. J. Solid State Chem., 2010, 183: 1365.
[79]  Xiao P, Zhu J, Li H, Jiang W, Wang T, Zhu Y, Zhao Y, Li J. ChemCatChem, 2014, 6: 1774.
[80]  Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T. J. Catal., 2012, 287: 149.
[81]  Ji K, Dai H, Deng J, Zhang L, Wang F, Jiang H, Au C T. Appl. Catal. A: Gen., 2012, 425/426: 153.
[82]  Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z. Appl. Catal. B: Environ., 2012, 119/120: 20.
[83]  Zhao Z, Dai H, Deng J, Du Y, Liu Y, Zhang L. Micropor. Mesopor. Mat., 2012, 163: 131.
[84]  Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J. J. Catal., 2013, 307: 327.
[85]  Zhao Z, Dai H, Deng J, Du Y, Liu Y, Zhang L. J. Mol. Catal. A: Chem., 2013, 366: 116.
[86]  Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G. J. Catal., 2013, 305: 146.
[87]  Pe?a M A, Fierro J L G. Chem. Rev., 2001, 101: 1981.
[88]  Jacobson A J. Chem. Mater., 2010, 22: 660.
[89]  Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y. Solid State Ionics, 1999, 118: 187.
[90]  Yu H C, Zhao F, Virkar A V, Fung K Z. J. Power Sources, 2005, 152: 22.
[91]  Dong F, Chen D, Ran R, Park H, Kwak C, Shao Z. Int. J. Hydrogen Energy, 2012, 37: 4377.
[92]  Tu H Y, Takeda Y, Imanishi N, Yamamoto O. Solid State Ionics, 1999, 117: 277.
[93]  Kindermann L, Das D, Nickel H, Hilpert K. Solid State Ionics, 1996, 89: 215.
[94]  Ko H J, Myung J H, Lee J H, Hyun S H, Chung J S. Int. J. Hydrogen Energy, 2012, 37: 17209.
[95]  Wang Y, Zhang L, Chen F, Xia C. Int. J. Hydrogen Energy, 2012, 37: 8582.
[96]  Bansal N P, Wise B. Ceram. Int., 2012, 38: 5535.
[97]  Park S Y, Ji H I, Kim H R, Yoon K J, Son J W, Kim B K, Je H J, Lee H W, Lee J H. J. Power Sources, 2013, 228: 97.
[98]  Park Y M, Kim H. Int. J. Hydrogen Energy, 2012, 37: 5320.
[99]  Gong Y, Palacio D, Song X, Patel R L, Liang X, Zhao X, Goodenough J B, Huang K. Nano Lett., 2013, 13: 4340.
[100]  Banerjee K, Mukhopadhyay J, Basu R N. Int. J. Hydrogen Energy, 2014, 39: 15754.
[101]  Liu Y, Chen J, Wang F, Chi B, Pu J, Jian L. Int. J. Hydrogen Energy, 2014, 39: 3404.
[102]  Liu Y, Chen K, Zhao L, Chi B, Pu J, Jiang S P, Jian L. Int. J. Hydrogen Energy, 2014, 39: 15868.
[103]  Yu T, Mao X, Ma G. Ceram. Int., 2014, 40: 13747.
[104]  Li W, Pu J, Chi B, Jian L. Electrochim. Acta, 2014, 141: 189.
[105]  Hou J, Zhu Z, Qian J, Liu W. J. Power Sources, 2014, 264: 67.
[106]  Prakash B S, Kumar S S, Aruna S T. Renew. Sust. Energy Rev., 2014, 36: 149.
[107]  Steele B C H, Heinzel A. Nature, 2001, 414: 345.
[108]  Atkinson A, Barnett S A, Gorte R J, Irvine J T S, Mcevoy A J, Mogensen M, Singhal S C, Vohs J. Nat. Mater., 2004, 3: 17.
[109]  Hui S Q, Petric A. J. Eur. Ceram. Soc., 2002, 22: 1673.
[110]  Hui S Q, Petric A. J. Electrochem. Soc., 2002, 149: 1.
[111]  Hui S Q, Petric A. Mater. Res. Bull., 2002,37:1215.
[112]  Li X, Zhao H, Xu N, Zhou X, Zhang C, Chen N. Int. J. Hydrogen Energy, 2009, 34: 6407.
[113]  Li X, Zhao H, Zhou X, Xu N, Xie Z, Chen N. Int. J. Hydrogen Energy, 2010, 35: 7913.
[114]  Ma Q, Tietz F, Leonide A, Ivers-Tiffée E. J. Power Sources, 2011, 196: 7308.
[115]  Ma Q, Tietz F, St?ver D. Solid State Ionics, 2011, 192: 535.
[116]  Feng M, Goodenough J. Eur. J. Solid State Inorg. Chem., 1994, 31: 663.
[117]  Laguna-Bercero M A. J. Power Sources, 2012, 203: 4.
[118]  Saribo D?a V, ?zdemir H, Faruk ?ksüz?mer M A. J. Eur. Ceram. Soc., 2013, 33: 1435.
[119]  Biswal R C, Biswas K. J. Eur. Ceram. Soc., 2013, 33: 3053.
[120]  Hao G, Liu X, Wang H, Be H, Pei L, Su W. Solid State Ionics, 2012, 255: 81.
[121]  Hao G, Li B, Liu S, Liu X, Wang H, Su W. Int. J. Hydrogen Energy, 2013, 38: 11392.
[122]  Raghvendra, Singh R K, Singh P. Solid State Ionics, 2014, 262: 428.
[123]  Raghvendra, Singh R K, Sinha A S K, Singh P. Cera. Int., 2014, 40: 10711.
[124]  Iwahara H, Uchida H, Ono K, Ogaki K. J. Electrochem. Soc., 1988, 135: 529.
[125]  Zuo C D, Zha S W, Liu M L, Hatano M. Adv. Mater., 2006, 18: 3318.
[126]  Fabbri E, D’Epifanio A, Bartolomeo E D, Licoccia S, Traversa E. Solid State Ion., 2008, 179: 558.
[127]  Yang L, Wang S Z, Blinn K, Liu M F, Liu Z, Cheng Z, Liu M L. Science, 2009, 326: 126.
[128]  Bi L, Traversa E. Electrochem. Commun., 2013, 36: 42.
[129]  Zhang L, Lan R, Tao S. Int. J. Hydrogen Energy, 2013, 38: 16546.
[130]  Gewirth A A, Thorum M S. Inorg. Chem., 2010, 49: 3557.
[131]  Li Y, Gong M, Liang Y, Feng J, Kim J E, Wang H, Hong G, Zhang B, Dai H. Nat. Commun., 2013, 4: 1805.
[132]  Lee J S, Kim S T, Cao R, Choi N S, Liu M, Lee K T, Cho J. Adv. Energy Mater., 2011, 1: 34.
[133]  Dong H, Y Kiros, Noréus D. Inter. J. Hydrogen Energy, 2010, 35: 4336.
[134]  Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H, Goodenough J B, Horn Y S. Nat. Chem., 2011, 3: 546.
[135]  Zhang T, Imanishi N, Takeda Y, Yamamoto O. Chem. Lett., 2011, 40, 668.
[136]  Ohkuma H, Uechi I, Imanishi N, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2013, 223: 319.
[137]  Chang Y M, Wu P W, Wu C Y, Hsieh Y F, Chen J Y. Electrochem. Solid State Lett., 2008, 11: B47.
[138]  Chang Y M, Hsieh Y C, Wu P W, Lai C H, Chang T Y. Mater. Lett., 2008, 62: 4220.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133