全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

超级电容器用石墨烯/金属氧化物复合材料

DOI: 10.7536/PC141024, PP. 404-415

Keywords: 超级电容器,石墨烯,金属氧化物,复合材料,制备方法,电化学性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

超级电容器是一种具有高功率密度和长循环寿命的新型储能装置,碳材料、金属氧化物和导电聚合物是常见的三种超级电容器电极材料。在石墨烯/金属氧化物复合材料中,石墨烯和金属氧化物可以发挥各自的优点,结合石墨烯优异的循环稳定性能和金属氧化物的高容量特性,纳米复合材料的综合性能可以得到很大地提升。因此,石墨烯/金属氧化物复合物的研究是超级电容器领域的热点研究方向之一。本文以金属氧化物的种类、石墨烯的结构和复合物的制备方法为线索,综述了国内外应用于超级电容器方面的石墨烯/金属氧化物复合材料的研究进展,归纳总结出与石墨烯复合最优的金属氧化物类型和制备方法,并进一步对该类复合材料的发展趋势进行了展望。

References

[1]  Wang H L, Casalongue H S, Liang Y Y, Dai H J. J. Am. Chem. Soc., 2010, 132: 7472.
[2]  Wang Y, Gai S L, Niu N, He F, Yang P P. J. Mater. Chem. A, 2013, 1: 9083.
[3]  Min S D, Zhao C J, Chen G R, Qian X Z. Electrochim. Acta, 2014, 115: 155.
[4]  Li L, Seng K H, Liu H, Nevirkovets I P, Guo Z P. Electrochim. Acta, 2013, 87: 801.
[5]  Dubal D P, Kim J G, Kim Y, Holze R, Lokhande C D, Kim W B. Energy Technol., 2014, 2: 325.
[6]  徐斌(Xu B), 张浩(Zhang H), 曹高萍(Cao G P), 张文峰(Zhang W F), 杨裕生(Yang Y S). 化学进展(Progress in Chemistry), 2011, 605.
[7]  Liu W J, Kao T W, Dai Y M, Jehng J M. J. Solid State Electrochem., 2014, 18: 189.
[8]  万厚钊(Wan H Z), 缪灵(Miao L), 徐葵(Xu K), 亓同(Qi T), 江建军 (Jiang J J). 化工学报(Journal of Chemical Industry), 2013, 64: 801.
[9]  Zhu J W, Chen S, Zhou H, Wang X. Nano Res., 2011, 5: 11.
[10]  Chen S, Duan J J, Jaroniec M, Qiao S Z. J. Mater. Chem. A, 2013, 1: 9409.
[11]  Zhang H T, Zhang X, Zhang D C, Sun X Z, Lin H, Wang C H, Ma Y W. J. Phys. Chem. B, 2013, 117: 1616.
[12]  Wang B, Park J, Wang C Y, Ahn H, Wang G X. Electrochim. Acta, 2010, 55: 6812.
[13]  Liu C L, Chang K H, Hu C C, Wen W C. J. Power Sources, 2012, 217: 184.
[14]  Rakhi R B, Chen W, Cha D, Alshareef H N. J. Mater. Chem., 2011, 21 : 16197.
[15]  Wang H W, Hu Z A, Chang Y Q, Chen Y L, Lei Z Q, Zhang Z Y, Yan Y Y. Electrochim. Acta, 2010, 55: 8974.
[16]  Pendashteh A, Mousavi M F, Rahmanifar M S. Electrochim. Acta, 2013, 88: 347.
[17]  Xia X H, Chao D L, Fan Z X, Guan C, Cao X H, Zhang H, Fan H J. Nano Lett., 2014, 14: 1651.
[18]  Lee J S, Lee C, Jun J, Shin D H, Jang J. J. Mater. Chem. A, 2014, 2: 11922.
[19]  柏嵩(Bai S), 沈小平(Shen X P). 化学进展(Progress in Chemistry), 2010, 22: 2106.
[20]  徐秀娟(Xu X J), 秦金贵(Qing J G), 李振(Li Z). 化学进展(Progress in Chemistry), 2009, 21: 2559.
[21]  李健(Li J), 官亦标(Guan Y B), 傅凯(Fu K), 苏岳锋(Su Y F), 包丽颖(Bao L Y), 吴锋(Wu F). 化学进展(Progress in Chemistry), 2014, 26(07): 1233.
[22]  来常伟(Lai C W), 孙莹(Sun Y), 杨洪(Yang H), 张雪勤(Zhang X Q), 林保平(Lin B P). 化学学报(Acta Chimica Sinica), 2013, 1201.
[23]  Huang Y, Liang J J, Chen Y S. Small, 2012, 8(12): 1805.
[24]  Tan Y B, Lee J M. J. Mater. Chem. A, 2013, 1(47): 14814.
[25]  康怡然(Kang Y R), 蔡锋(Cai F), 陈宏源(Chen H Y), 陈名海(Chen M H), 张锐(Zhang R), 李清文(Li Q W). 化学进展(Progress in Chemistry), 2014, 26: 1562.
[26]  Lake J R, Cheng A, Selverston S, Tanaka Z, Koehne J, Meyyappan M, Chen B. J. Vac. Sci. Technol. B, 2012, 30: 03D118.
[27]  Xu Y X, Huang X Q, Lin Z Y, Zhong X, Huang Y, Duan X F. Nano Res., 2012, 6: 65.
[28]  Zhu L X, Zhang S, Cui Y H, Song H H, Chen X H. Electrochim. Acta, 2013, 89: 18.
[29]  Guo G L, Huang L, Chang Q H, Ji L C, Liu Y, Xie Y Q, Shi W Z, Jia N Q. Appl. Phys. Lett., 2011, 99: 083111.
[30]  Zhu Y G, Wang Y, Shi Y, Huang Z X, Fu L, Yang H Y. Adv. Energy Mater., 2014, 4(9): 1301788.
[31]  Purushothaman K K, Saravanakumar B, Babu I M, Sethuraman B, Muralidharan G. RSC Adv., 2014, 4: 23485.
[32]  Liu M M, Sun J. J. Mater. Chem. A, 2014, 2: 12068.
[33]  Liu Y, Ying Y L, Mao Y Y, Gu L, Wang Y W, Peng X S. Nanoscale, 2013, 5: 9134.
[34]  Chen S, Xing W, Duan J J, Hu X J, Qiao S Z. J. Mater. Chem. A, 2013, 1: 2941.
[35]  Li Y, Zhao N Q, Shi C S, Liu E Z, He C N. J. Phys. Chem. C, 2012, 116: 25226.
[36]  Wei W F, Cui X W, Chen W X, Ivey D G. Chem. Soc. Rev., 2011, 40: 1697.
[37]  Dai X J, Shi W M, Cai H Q, Li R, Yang G C. Solid State Sci., 2014, 27: 17.
[38]  Chan P Y, Rusi Majid S R. Solid State Ionics, 2014, 262: 226.
[39]  Li Y J, Wang G L, Ye K, Cheng K, Pan Y, Yan P, Yin J L, Cao D X. J. Power Sources, 2014, 271: 582.
[40]  He Y M, Chen W J, Li X D, Zhang Z X, Fu J C, Zhao C H, Xie E Q. ACS Nano, 2013, 7: 174.
[41]  Zhao Y Q, Zhao D D, Tang P Y, Wang Y M, Xu C L, Li H L. Mater. Lett., 2012, 76: 127.
[42]  Zhang Z Y, Xiao F, Qian L H, Xiao J W, Wang S, Liu Y Q. Adv. Energy Mater., 2014, 4: 1400064.
[43]  Liu T T, Shao G J, Ji M T, Wang G L. J. Solid State Chem., 2014, 215: 160.
[44]  Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L C. Carbon, 2011, 49: 2917.
[45]  Yu G H, Hu L B, Vosgueritchian M, Wang H L, Xie X, McDonough J R, Cui X, Cui Y, Bao Z A. Nano Lett., 2011, 11: 2905.
[46]  Li Z P, Wang J Q, Liu S, Liu X H, Yang S R. J. Power Sources, 2011, 196: 8160.
[47]  Qian Y, Lu S B, Gao F L. J. Mater. Sci., 2011, 46: 3517.
[48]  Choi B G, Yang M, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6: 4020.
[49]  Ge J, Yao H B, Hu W, Yu X F, Yan Y X, Mao L B, Li H H, Li S S, Yu S H. Nano Energy, 2013, 2: 505.
[50]  Mao L, Zhang K, Chan H S O, Wu J S. J. Mater. Chem., 2012, 22: 1845.
[51]  Patil U M, Sohn J S, Kulkarni S B, Park H G, Jung Y, Gurav K V, Kim J H, Jun S C. Mater. Lett., 2014, 119: 135.
[52]  Li Z P, Wang J Q, Liu X H, Liu S, Ou J F, Yang S R. J. Mater. Chem., 2011, 21: 3397.
[53]  Cheng H H, Long L, Shu D, Wu J Q, Gong Y B, He C, Kang Z X, Zou X P. Int. J. Hydrogen Energy, 2014, 39: 16151.
[54]  Feng X M, Chen N N, Zhang Y, Yan Z Z, Liu X F, Ma Y W, Shen Q M, Wang L H, Huang W. J. Mater. Chem. A, 2014, 2: 9178.
[55]  Wu Z S, Ren W C, Wang D W, Li F, Liu B L, Cheng H M. ACS Nano, 2010, 4: 5835.
[56]  Chen H, Zhou S X, Chen M, Wu L M. J. Mater. Chem., 2012, 22: 25207.
[57]  Wu S S, Chen W F, Yan L F. J. Mater. Chem. A, 2014, 2: 2765.
[58]  Fan Z J, Yan J, Wei T, Zhi L J, Ning G Q, Li T Y, Wei F. Adv. Funct. Mater., 2011, 21: 2366.
[59]  Zhang C Y, Zhu X H, Wang Z X, Sun P, Ren Y J, Zhu J L, Zhu J G, Xiao D Q. Nanoscale Res. Lett., 2014, 9: 490.
[60]  Lee M T, Fan C Y, Wang Y C, Li H Y, Chang J K, Tseng C M. J. Mater. Chem. A, 2013, 1: 3395.
[61]  Lee K G, Jeong J M, Lee S J, Yeom B, Lee M K, Choi B G. Ultrason. Sonochem., 2015, 22: 42.
[62]  Zhao B, Song J S, Liu P, Xu W W, Fang T, Jiao Z, Zhang H J, Jiang Y. J. Mater. Chem., 2011, 21: 18792.
[63]  Zhu X J, Dai H L, Hu J, Ding L, Jiang L. J. Power Sources, 2012, 203: 243.
[64]  Wu C H, Deng S X, Wang H, Sun Y X, Liu J B, Yan H. ACS Appl. Mater. Interfaces, 2014, 6: 1106.
[65]  Huang M L, Gu C D, Ge X, Wang X L, Tu J P. J. Power Sources, 2014, 259: 98.
[66]  Su X H, Chai H, Jia D Z, Bao S J, Zhou W Y, Zhou M L. New J. Chem., 2013, 37: 439.
[67]  Jiang Y, Chen D D, Song J S, Jiao Z, Ma Q L, Zhang H J, Cheng L L, Zhao B, Chu Y L. Electrochim. Acta, 2013, 91: 173.
[68]  Yang Y Y, Hu Z A, Zhang Z Y, Zhang F H, Zhang Y J, Liang P J, Zhang H Y, Wu H Y. Mater. Chem. Phys., 2012, 133: 363.
[69]  Ge C Y, Hou Z H, He B H, Zeng F Y, Cao J G, Liu Y M, Kuang Y F. J. Sol-Gel Sci. Technol., 2012, 63: 146.
[70]  Zhao B, Zhuang H, Fang T, Jiao Z, Liu R Z, Ling X T, Lu B, Jiang Y. J. Alloys Compd. , 2014, 597: 291.
[71]  Lee G H, Cheng Y W, Varanasi C V, Liu J. J. Phys. Chem. C, 2014, 118(5): 2281.
[72]  Dam D T, Wang X, Lee J M. ACS Appl. Mater. Interfaces, 2014, 6: 8246.
[73]  Cao X H, Shi Y M, Shi W H, Lu G, Huang X, Yan Q Y, Zhang Q C, Zhang H. Small, 2011, 7: 3163.
[74]  Xie L J, Wu J F, Chen C M, Zhang C M, Wan l, Wang J L, Kong Q Q, Lv C X, Li K X, Sun G H. J. Power Sources, 2013, 242: 148.
[75]  Yan J, Wei T, Qiao W M, Shao B, Zhao Q K, Zhang L J, Fan Z J. Electrochim. Acta, 2010, 55: 6973.
[76]  Park S, Kim S. Electrochim. Acta, 2013, 89: 516.
[77]  Kumar R, Kim H J, Park S, Srivastava A, Oh I K. Carbon, 2014, 79: 192.
[78]  Yuan C Z, Zhang L H, Hou L R, Pang G, Oh W C. RSC Adv., 2014, 4: 14408.
[79]  Wang X W, Liu S Q, Wang H Y, Tu F Y, Fang D, Li Y H. J. Solid State Electrochem., 2012, 16: 3593.
[80]  Guan Q, Cheng J L, Wang B, Ni W, Gu G F, Li X D, Huang L, Yang G C, Nie F D. ACS Appl. Mater. Interfaces, 2014, 6: 7626.
[81]  Li Z J, Liu P, Yun G Q, Shi K, Lv X W, Li K, Xing J H, Yang B C. Energy, 2014, 69: 266.
[82]  Hu X N, Yan Z, Li Q, Yang Q, Kang L P, Lei Z B, Liu Z H. Colloids Surf. A, 2014, 461: 105.
[83]  Nagaraju D H, Wang Q X, Beaujuge P, Alshareef H N. J. Mater. Chem. A, 2014, 2: 17146.
[84]  Shen J F, Li X F, Li N, Ye M X. Electrochimica Acta, 2014, 141: 126.
[85]  Wang H L, Liang Y Y, Mirfakhrai T, Chen Z, Casalongue H S, Dai H J. Nano Res., 2011, 4: 729.
[86]  Chang J, Jin M H, Yao F, Kim T H, Le V T, Yue H Y, Gunes F, Li B, Ghosh A, Xie S, Lee Y H. Adv. Funct. Mater., 2013, 23: 5074.
[87]  Li X C, Xu X Y, Xia F L, Bu L X, Qiu H X, Chen M X, Zhang L, Gao J P. Electrochim. Acta, 2014, 130: 305.
[88]  Yu A P, Sy A, Davies A. Synth. Met., 2011, 161: 2049.
[89]  Zhao X, Zhang L L, Murali S, Stoller M D, Zhang Q H, Zhu Y W, Ruoff R S. ACS Nano, 2012, 6: 5404.
[90]  Yang W L, Gao Z, Wang J, Wang B, Liu Q, Li Z S, Mann T, Yang P P, Zhang M L, Liu L H. Electrochim. Acta, 2012, 69: 112.
[91]  Kim M, Yoo M, Yoo Y, Kim J. Microelectron. Reliab., 2014, 54: 587.
[92]  Dong X C, Wang X W, Wang J, Song H, Li X G, Wang L H, Chan-Park M B, Li C M, Chen P. Carbon, 2012, 50: 4865.
[93]  Zhu X L, Zhang P, Xu S, Yan X B, Xue Q J. ACS Appl. Mater. Interfaces, 2014, 6: 11665.
[94]  Mishra A K, Ramaprabhu S. J. Phys. Chem. C, 2011, 115: 14006.
[95]  Chen Y, Zhang X, Zhang D C, Ma Y W. J. Alloys Compd., 2012, 511: 251.
[96]  Kim J Y, Kim K H, Yoon S B, Kim H K, Park S H, Kim K B. Nanoscale, 2013, 5: 6804.
[97]  Shen J F, Li T, Huang W S, Long Y, Li N, Ye M X. Electrochim. Acta, 2013, 95: 155.
[98]  Lin N, Tian J H, Shan Z Q, Chen K A, Liao W M. Electrochim. Acta, 2013, 99: 219.
[99]  Bu Y F, Wang S N, Jin H L, Zhang W M, Lin J J, Wang J C. J. Electrochem. Soc., 2012, 159: A990.
[100]  Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6: 3206.
[101]  Zhou W W, Liu J P, Chen T, Tan K S, Jia X T, Luo Z Q, Cong C X, Yang H P, Li H M, Yu T. Phys. Chem. Chem. Phys., 2011, 13: 14462.
[102]  Wang H Z, Shi Y L, Li Z X, Zhang W G, Yao S W. Chem. Res. Chin. Univ., 2014, 30: 650.
[103]  Prakash A, Bahadur D. ACS Appl. Mater. Interfaces, 2014, 6: 1394.
[104]  Ramadoss A, Kim S J. Mater. Chem. Phys., 2013, 140: 405.
[105]  Zhang L D, Du G X, Zhou B, Wang L. Ceram. Int., 2014, 40: 1241.
[106]  Chen Y L, Hu Z A, Chang Y Q, Wang H W, Zhang Z Y, Yang Y Y, Wu H Y. J. Phys. Chem. C, 2011, 115: 2563.
[107]  Haldorai Y, Voit W, Shim J J. Electrochim. Acta, 2014, 120: 65.
[108]  Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Adv., 2012, 2: 4364.
[109]  Wang Q H, Jiao L F, Du H M, Wang Y J, Yuan H T. J. Power Sources, 2014, 245: 101.
[110]  Wang Z, Ma C Y, Wang H L, Liu Z H, Hao Z P. J. Alloys Compd. , 2013, 552: 486.
[111]  Zhao P H, Li W L, Wang G, Yu B Z, Li X J, Bai J T, Ren Z Y. J. Alloys Compd. , 2014, 604: 87.
[112]  Ma Z L, Huang X B, Dou S, Wu J H, Wang S Y. J. Phys. Chem. C, 2014, 118: 17231.
[113]  Low Q X, Ho G W. Nano Energy, 2014, 5: 28.
[114]  Wang H W, Xu Z J, Yi H, Wei H G, Guo Z H, Wang X F. Nano Energy, 2014, 7: 86.
[115]  Hsieh C T, Lee W Y, Lee C E, Teng H S. J. Phys. Chem. C, 2014, 118: 15146.
[116]  Chen M X, Wang H, Li L Z, Zhang Z, Wang C, Liu Y, Wang W, Gao J P. ACS Appl. Mater. Interfaces, 2014, 6: 14327.
[117]  Luo Y Z, Zhang H M, Guo D, Ma J M, Li Q H, Chen L B, Wang T H. Electrochim. Acta, 2014, 132: 332.
[118]  Wei Y Y, Chen S Q, Su D W, Sun B, Zhu J G, Wang G X. J. Mater. Chem. A, 2014, 2: 8103.
[119]  Wang L, Wang X H, Xiao X P, Xu F G, Sun Y J, Li Z. Electrochim. Acta, 2013, 111: 937.
[120]  Xu X W, Shen J F, Li N, Ye M X. J. Alloys Compd. , 2014, 616: 58.
[121]  Wang Z, Zhang X, Li Y, Liu Z T, Hao Z P. J. Mater. Chem. A, 2013, 1: 6393.
[122]  Wang Y H, He P, Lei W, Dong F Q, Zhang T H. Composites Sci. Technol., 2014, 103: 16.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133