全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

金纳米棒的制备、生长机理及纯化

DOI: 10.7536/PC150111, PP. 785-793

Keywords: 金纳米棒,制备,生长机理,纯化,晶体结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

金纳米棒由于其独特物理性质而在众多的各向异性金纳米颗粒中赢得了关注。目前,金纳米棒在纳米电子学、光学、生物医药等研究领域均具有良好的应用前景。对金纳米棒合成的有效调控直接决定着其形状、尺寸和长径比,而这些又进一步影响着金纳米棒的物理性质。本文梳理了金纳米棒制备方法的发展脉络,以模板法、电化学方法、种子生长法以及近年来出现的无种子生长法为主线,系统综述了金纳米棒制备过程实验参数调控对产物结构、物理性质的影响,详细阐述了关于单晶以及孪晶金纳米棒的生长机理,并介绍了提高产物纯度的分离纯化手段。

References

[1]  Frens G. Nat. Phys. Sci., 1973, 241 (105): 20.
[2]  葛余俊(Ge Y J), 赤骋(Chi C), 伍蓉(Wu R), 郭霞(Guo X), 张巧(Zhang Q), 杨剑(Yang J). 化学进展(Progress in Chemistry), 2012, 24 (05): 776.
[3]  Li Z, Kübel C, Parvulescu V I, Richards R. ACS Nano, 2008, 2 (6): 1205.
[4]  Gao C, Zhang Q, Lu Z, Yin Y. J. Am. Chem. Soc., 2011, 133 (49): 19706.
[5]  Yu Y Y, Chang S S, Lee C L, Wang C R C. J. Phys. Chem. B, 1997, 101 (34): 6661.
[6]  Chang S S, Shih C W, Chen C D, Lai W C, Wang C R C. Langmuir, 1999, 15 (3): 701.
[7]  Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13 (18): 1389.
[8]  Nikoobakht B, El-Sayed M A. Chem. Mater., 2003, 15 (10): 1957.
[9]  Liu M Z, Guyot-Sionnest P. J. Phys. Chem. B, 2005, 109 (47): 22192.
[10]  Sau T K, Murphy C J. Langmuir, 2004, 20 (15): 6414.
[11]  Gao J X, Bender C M, Murphy C J. Langmuir, 2003, 19 (21): 9065.
[12]  Gou L, Murphy C J. Chem. Mater., 2005, 17 (14): 3668.
[13]  Jiang X C, Brioude A, Pileni M P. Colloids Surf. A, 2006, 277 (1/3): 201.
[14]  Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C, Doan-Nguyen V, Kang Y, Engheta N, Kagan C R, Murray C B. ACS Nano, 2012, 6 (3): 2804.
[15]  Ye X, Zheng C, Chen J, Gao Y, Murray C B. Nano Lett., 2013, 13 (2): 765.
[16]  Boleininger J, Kurz A, Reuss V, Sonnichsen C. Phys. Chem. Chem. Phys., 2006, 8 (33): 3824.
[17]  Lohse S E, Eller J R, Sivapalan S T, Plews M R, Murphy C J. ACS Nano, 2013, 7 (5): 4135.
[18]  Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105 (19): 4065.
[19]  Khanal B P, Zubarev E R. J. Am. Chem. Soc., 2008, 130 (38): 12634.
[20]  Jana N R. Small, 2005, 1 (8/9): 875.
[21]  Ali M R, Snyder B, El-Sayed M A. Langmuir, 2012, 28 (25): 9807.
[22]  Lai J, Zhang L, Niu W, Qi W, Zhao J, Liu Z, Zhang W, Xu G. Nanotechnology, 2014, 25 (12): 125601.
[23]  Perez-Juste J, Liz-Marzan L M, Carnie S, Chan D Y C, Mulvaney P. Adv. Funct. Mater., 2004, 14 (6): 571.
[24]  Zhang J, Xi C, Feng C, Xia H, Wang D, Tao X. Langmuir, 2014, 30 (9): 2480.
[25]  Zijlstra P, Bullen C, Chon J W M, Gu M. J. Phys. Chem. B, 2006, 110 (39): 19315.
[26]  Murphy C J, Sau T K, Gole A M, Orendorff C J, Gao J, Gou L, Hunyadi S E, Li T. J. Phys. Chem. B, 2005, 109 (29): 13857.
[27]  Koeppl S, Koch F P V, Caseri W, Spolenak R. J. Mater. Chem., 2012, 22 (29): 14594.
[28]  Xu X, Zhao Y, Xue X, Huo S, Chen F, Zou G, Liang X J. J. Mater. Chem. A, 2014, 2 (10): 3528.
[29]  Zhang L, Xia K, Lu Z, Li G, Chen J, Deng Y, Li S, Zhou F, He N. Chem. Mater., 2014, 26 (5): 1794.
[30]  Wang Z L, Gao R P, Nikoobakht B, El-Sayed M A. J. Phys. Chem. B, 2000, 104 (23): 5417.
[31]  Wang Z L, Mohamed M B, Link S, El-Sayed M A. Surf. Sci., 1999, 440 (1/2): L809.
[32]  Carbó-Argibay E, Rodríguez-González B, Gómez-Gra?a S, Guerrero-Martínez A, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán L M. Angew. Chem. Int. Ed., 2010, 49 (49): 9397.
[33]  Johnson C J, Dujardin E, Davis S A, Murphy C J, Mann S. J. Mater. Chem., 2002, 12 (6): 1765.
[34]  Wu H Y, Huang W L, Huang M H. Cryst. Growth Des., 2007, 7 (4): 831.
[35]  Dreaden E C, Alkilany A M, Huang X, Murphy C J, El-Sayed M A. Chem. Soc. Rev., 2012, 41 (7): 2740.
[36]  Edgar J A, McDonagh A M, Cortie M B. ACS Nano, 2012, 6 (2): 1116.
[37]  Langille M R, Zhang J, Personick M L, Li S, Mirkin C A. Science, 2012, 337 (6097): 954.
[38]  Lohse S E, Murphy C J. Chem. Mater., 2013, 25 (8): 1250.
[39]  Park K, Drummy L F, Wadams R C, Koerner H, Nepal D, Fabris L, Vaia R A. Chem. Mater., 2013, 25 (4): 555.
[40]  Hubert F, Testard F, Spalla O. Langmuir, 2008, 24 (17): 9219.
[41]  Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134 (35): 14542.
[42]  Personick M L, Langille M R, Zhang J, Mirkin C A. Nano Lett., 2011, 11 (8): 3394.
[43]  Lin G, Lu W, Cui W, Jiang L. Cryst. Growth Des., 2010, 10 (3): 1118.
[44]  Ren F, Wang H, Zhai C, Zhu M, Yue R, Du Y, Yang P, Xu J, Lu W. ACS Appl. Mater. Interfaces, 2014, 6 (5): 3607.
[45]  Yang J, Wu J C, Wu Y C, Wang J K, Chen C C. Chem. Phys. Lett., 2005, 416 (4/6): 215.
[46]  陈德皓(Chen D H), 徐常登(Xu C D), 刘子立(Liu Z L), 陈玲(Chen L), 甄春花(Zhen C H), 孙世刚(Sun S G). 化学进展(Progress in Chemistry), 2013, 25 (10): 1667.
[47]  Daniel M C, Astruc D. Chem. Rev., 2004, 104 (1): 293.
[48]  Murray R W. Chem. Rev., 2008, 108 (7): 2688.
[49]  马占芳(Ma Z F), 田乐(Tian L), 邸静(Di J), 丁腾(Ding T). 化学进展(Progress in Chemistry), 2009, 21 (1): 134.
[50]  Shao L, Fang C, Chen H, Man Y C, Wang J, Lin H Q. Nano Lett., 2012, 12 (3): 1424.
[51]  Ueno K, Juodkazis S, Mino M, Mizeikis V, Misawa H. J. Phys. Chem. C, 2007, 111 (11): 4180.
[52]  Chen H, Shao L, Li Q, Wang J. Chem. Soc. Rev., 2013, 42 (7): 2679.
[53]  Vigderman L, Zubarev E R. Chem. Mater., 2013, 25 (8): 1450.
[54]  Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53 (7): 1756.
[55]  Xiao J, Li Z, Ye X, Ma Y, Qi L. Nanoscale, 2014, 6 (2): 996.
[56]  Banholzer M J, Li S, Ketter J B, Rozkiewicz D I, Schatz G C, Mirkin C A. J. Phys. Chem. C, 2008, 112 (40): 15729.
[57]  Cepak V M, Martin C R. J. Phys. Chem. B, 1998, 102 (49): 9985.
[58]  Foss C A, Hornyak G L, Stockert J A, Martin C R. J. Phys. Chem., 1994, 98 (11): 2963.
[59]  Martin C R. Chem. Mater., 1996, 8 (8): 1739.
[60]  Hornyak G L, Patrissi C J, Martin C R. J. Phys. Chem. B, 1997, 101 (9): 1548.
[61]  Van der Zande B M I, B?hmer M R, Fokkink L G J, Sch?nenberger C. J. Phys. Chem. B, 1997, 101 (6): 852.
[62]  Van der Zande B M I, B?hmer M R, Fokkink L G J, Sch?nenberger C. Langmuir, 1999, 16 (2): 451.
[63]  Nikoobakht B, El-Sayed M A. Langmuir, 2001, 17 (20): 6368.
[64]  Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan L M. Chem. Soc. Rev., 2008, 37 (9): 1783.
[65]  Garg N, Scholl C, Mohanty A, Jin R. Langmuir, 2010, 26 (12): 10271.
[66]  Sau T K, Murphy C J. Philos. Mag., 2007, 87 (14/15): 2143.
[67]  Si S, Leduc C, Delville M H, Lounis B. ChemPhysChem, 2012, 13 (1): 193.
[68]  Bullen C, Zijlstra P, Bakker E, Gu M, Raston C. Cryst. Growth Des., 2011, 11 (8): 3375.
[69]  Kanicky J R, Shah D O. J. Colloid Interface Sci., 2002, 256 (1): 201.
[70]  Wang D, Nap R J, Lagzi I, Kowalczyk B, Han S, Grzybowski B A, Szleifer I. J. Am. Chem. Soc., 2011, 133 (7): 2192.
[71]  Ye X, Gao Y, Chen J, Reifsnyder D C, Zheng C, Murray C B. Nano Lett., 2013, 13 (5): 2163.
[72]  Lohse S E, Burrows N D, Scarabelli L, Liz-Marzán L M, Murphy C J. Chem. Mater., 2014, 26 (1): 34.
[73]  Zweifel D A, Wei A. Chem. Mater., 2005, 17 (16): 4256.
[74]  Sharma V, Park K, Srinivasarao M. Proc. Natl. Acad. Sci. U. S. A., 2009, 106 (13): 4981.
[75]  Wu J, Jia W, Lu W, Jiang L. ACS Appl. Mater. Interfaces, 2012, 4 (12): 6560.
[76]  Guo Z, Fan X, Xu L, Lu X, Gu C, Bian Z, Gu N, Zhang J, Yang D. Chem. Commun., 2011, 47 (14): 4180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133