全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

磁性金属-有机骨架材料的合成及其应用

DOI: 10.7536/PC150110, PP. 945-952

Keywords: 磁性金属-有机骨架,生物医学,环境样品预处理,催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁性金属-有机骨架(magneticmetal-organicframeworks,MMOFs)材料是近年来兴起的新型纳米功能材料,它由MOFs材料和磁性材料组合而成,具有高选择性、良好分散性和可多次重复利用等优点,在环境、医学和生物学研究领域应用广泛。本文介绍了MMOFs材料的四种合成方法,包括嵌入法、叠层法、封装法和混合法,其中嵌入法是指将磁性颗粒材料镶嵌在MOFs表面,叠层法是将MOFs层覆盖和叠加生长在官能化磁性颗粒材料表面,封装法是MOFs材料围绕磁性颗粒在其周围生长并将其包埋起来,混合法是将MOFs和磁性颗粒物通过物理或化学作用发生聚合合成。MOFs与磁性颗粒材料结合形成的MMOFs,既保留了MOFs材料的结构与性能,又增添了颗粒材料的磁性,从而大大拓展了MOFs的应用范围。鉴于MMOFs可携带特定的物质释放于指定位置,容易从复杂基质中分离,并可通过外部磁性进行定位与收集等优势与特点,其在生物医药、环境样品预处理和催化等领域得到了广泛的应用。

References

[1]  Imaz I, Hernando J, Molina D R, Maspoch D. Angew. Chem. Int. Ed., 2009, 48: 2325.
[2]  Champness N R. Angew. Chem. Int. Ed., 2009, 48: 2274.
[3]  Imaz I, Martínez M R, Fernández L G, García F, Molina D R, Hernando J, Puntes V, Maspoch D. Chem. Commun., 2010, 46: 4737.
[4]  Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21: 3843.
[5]  Figuerola A, Corato R D, Manna L, Pellegrino T. Pharmacol. Res., 2010, 62: 126.
[6]  Falcaro P, Buso D, Hill A J, Doherty C M. Adv. Mater., 2012, 24: 3153.
[7]  Mejías R, Gutiérrez L, Salas G, Yagüe S P, Zotes T M, Lázaro F J, Morales M P, Barber D F. J. Controlled Release, 2013, 171: 225.
[8]  Sun Z H, Wang L F, Liu P P, Wang S C, Sun B, Jiang D Z, Xiao F S. Adv. Mater., 2006, 18: 1968.
[9]  Chen X F, Ding N, Zang H, Yeun H, Zhao R S, Cheng C G, Liu J H, Chan T W D. J. Chromatogr. A, 2013, 1304: 241.
[10]  Ke F, Qiu L G, Yuan Y P, Jiang X, Zhu J F. J. Mater. Chem., 2012, 22: 9497.
[11]  Hu Y L, Huang Z L, Liao J, Li G K. Anal. Chem., 2013, 85: 6885.
[12]  Zhang Z M, Tan W, Hu Y L, Li G K, Zan S. Analyst, 2012, 137: 968.
[13]  Xie W, Han C, Zheng Z Q, Chen X M, Qian Y, Ding H Y, Shi L, Lv C H. Food. Chem., 2011, 127: 890.
[14]  Chen X F, Hao Z, Xia W, Cheng J G, Zhao R S, Cheng C G, Lu X Q. Analyst, 2012, 137: 5411.
[15]  Batten S R, Robson R. Angew. Chem. Int. Ed., 1998, 37: 1460.
[16]  Czaja A U, Trukhan N, Müller U. Chem. Soc. Rev., 2009, 38: 1284.
[17]  Hu Y H, Zhang L. Adv. Mater., 2010, 22: E117.
[18]  Chowdhury P, Mekala S, Dreisbach F, Gumma S. Microporous. Mesoporous. Mater., 2012, 152: 246.
[19]  Yang J F, Yu Q H, Zhao Q, Liang J M, Dong J X, Li J P. Microporous. Mesoporous. Mater., 2012, 161: 154.
[20]  Li Z J, Xiao G, Yang Q Y, Xiao Y L, Zhong C L. Chem. Eng. Sci., 2014, 120: 59.
[21]  Falcaro P, Ricco R, Doherty C M, Liang K, Hill A J, Styles M J. Chem. Soc. Rev., 2014, 43: 5513.
[22]  Kreno L E, Leong K, Farha O K, Allendorf M, Duyne R P V, Hupp J T. Chem. Rev., 2012, 112: 1105.
[23]  Kong Z G, Sun X R, Li L, Wang H X, Wang X Y, Seik W N. Transition Met. Chem., 2013, 38: 449.
[24]  Khan N A, Hasan Z, Jhung S H. J. Hazard. Mater., 2013, 244/245: 444.
[25]  Keskin S, Seda Kizilel. Ind. Eng. Chem. Res., 2011, 50: 1799.
[26]  Zhou Y Y, Yan X P, Kim K N, Wang S W, Liu M G. J. Chromatogr. A, 2006, 1116: 172.
[27]  Ge D D, Lee H K. J. Chromatogr. A, 2011, 1218: 8490.
[28]  Hu P, Morabito J V, Tsung C K. J. Am. Chem. Soc., 2014, 4: 4409.
[29]  Long Z, Jia J, Wang S L, Kou L, Hou X D, Sepaniak M J. Microchem. J., 2013,110: 764.
[30]  Sugikawa K, Nagata S, Furukawa Y, Kokado K, Sada K. J. Am. Chem. Soc., 2013, 25: 2565.
[31]  Petit C, Bandosz T J. Adv. Mater., 2009, 21: 4753.
[32]  Yan Z M, Zheng J N, Chen J F, Tong P, Lu M H, Lin Z, Zhang L. J. Chromatogr. A, 2014, 1366: 45.
[33]  Lu G, Li S Z, Guo Z, Farha O K, Hauser B G, Qi X Y, Wang Y, Wang X, Han S Y, Liu X G, DuChene J S, Zhang H, Zhang Q C, Chen X D, Ma J, Loo S C J, Wei D W, Yang Y H, Hupp J H, Huo F W. Nat. Chem., 2012, 4: 310.
[34]  付艳艳(Fu Y Y), 严秀平(Yan X P).化学进展(Prog. Chem.), 2013, 25: 221.
[35]  Falcaro P, Lapierre F, Marmiroli B, Styles M, Zhu Y G, Takahashi M, Hillad A J, Doherty C M. J. Mater. Chem. C., 2013, 1: 42.
[36]  Zhou Y Y, Zhang C Y, Yan Z G, Li K J, Wang L, Xie Y B, Li F S, Liu Z, Yang J. Anal. Chim. Acta, 2012, 747: 36.
[37]  Li K J, Zhou Y Y, Wang L, Hou H, Li F S. Res. Environ. Sci., 2010, 23: 198.
[38]  Giakisikli G, Anthemidis A N. Anal. Chim. Acta, 2013, 789: 1.
[39]  Ghosh S, Badruddoza A Z M, Hidajat K, Uddin M S. Environ. Chem. Eng., 2013,1: 122.
[40]  Afkhami A, Moosavi R. J. Hazard. Mater., 2010, 174: 398.
[41]  Huang C Z, Hu B. Spectrochim. Acta. B, 2008, 63: 437.
[42]  Gao L, Chen L G. Microchim. Acta, 2013, 180: 423.
[43]  Liu J C, Tsai P J, Yuan C L. Chen Y C. Anal. Chem., 2008, 80: 5425.
[44]  Gao Q, Zheng H B, Luo D, Ding J, Feng Y Q. Anal. Chim. Acta, 2012, 720: 57.
[45]  Jiang W, Wang W F, Pan B C, Zhang Q X, Zhang W M, Lv L. J. Am. Chem. Soc., 2014, 6: 3421.
[46]  Ricco R, Malfatti L, Takahashi M, Hill A J, Falcaro P. J. Mater. Chem. A, 2013, 1: 13033.
[47]  Stock N, Biswas S. Chem. Rev., 2012, 112: 933.
[48]  Doherty C M, Knystautas E, Buso Dario, Villanova L, Konstas K, Hill A J, Takahashif M, Falcaro P. J. Mater. Chem., 2012, 22: 11470.
[49]  Munuera C, Shekhah O, Wang H, W?ll C, Ocal C. Phys. Chem. Chem. Phys., 2008, 10: 7257.
[50]  Shekhah O, Wang H, Kowarik S, Schreiber F, Paulus M, Tolan M, Sternemann C, Evers F, Zacher D, Fischer R A, W?ll C. J. Am. Chem. Soc., 2007, 129(49): 15118.
[51]  Zhang T, Zhang X F, Yan X J, Kong L Y, Zhang G C, Liu H O, Qiu J S, King L Y. Chem. Eng. J., 2013, 228: 398.
[52]  Huo S H, Yan X P. Analyst, 2012, 137: 3445.
[53]  Lohe M R, Gedrich K, Freudenberg T, Kockrick E, Dellmann T, Kaskel S. Chem. Commun., 2011, 47: 3075.
[54]  He J C, Huang M Y, Wang D M, Zhang Z M, Li G K. J. Pharm. Biomed., 2014, 101: 84.
[55]  Wierucka Marta, Biziuk M. Trend. Anal. Chem., 2014, 59: 50.
[56]  Zhang W, Liang F, Li C, Qiu LG, Yuan Y P, Peng F M, Jiang X, Xi A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 186: 984.
[57]  Sen T, Sebastianelli A, Bruce I J. J. Am. Chem. Soc., 2006, 128: 7130.
[58]  Ai L H, Huang H Y, Chen Z L, Wei X, Jiang J. Chem. Eng. J., 2010, 156: 243.
[59]  Zhu H Y, Jiang R, Xiao L, Zeng G M. Bioresour. Technol., 2010, 101: 5063.
[60]  Zhang G J, Zang X H, Li Z, Wang C, Wang Z. Talanta, 2014, 129: 600.
[61]  Hu C, He M, Chen B B, Zhong C, Hu B. J. Chromatogr. A, 2014, 1356: 45.
[62]  Yang S L, Chen C Y, Yan Z H, Cai Q Y, Yao S Z. J. Sep. Sci., 2013, 36: 1283.
[63]  Wang Y, Xie J, Wu Y C, Hu X Y. Microchim. Acta, 2014, 181: 949.
[64]  Escudero L A, Cerutti S, Olsina R A, Salonia J A, Gasquez J A. J. Hazard. Mater., 2010, 183: 218.
[65]  Yu H M, Song H, Chen M L. Talanta, 2011, 85: 625.
[66]  Bagheri A, Taghizadeh M, Behbahani M, Asgharinezhad A A, Salarian M, Dehghani A, Ebrahimzadeh H, Amini M M. Talanta, 2012, 99: 132.
[67]  Sohrabi M R, Matbouie Z, Asgharinezhad A A, Dehghani A. Microchim. Acta, 2013, 180: 589.
[68]  Taghizadeh M, Asgharinezhad A A, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A. Microchim. Acta, 2013, 180: 1073.
[69]  Suleiman J S, Hu B, Peng H Y, Huang C Z. 2009, Talanta, 77: 1579.
[70]  Zhao M, Deng C H, Zhang X M, Yang P Y. Proteomics, 2013, 13: 3387.
[71]  Dhakshinamoorthy A, Opanasenko M, ?ejka J, Garcia H. Adv. Synth. Catal., 2013, 355: 247.
[72]  Corma A, Garcia H, Xamena F X L i. Chem. Rev., 2010, 110: 4606.
[73]  Lee J Y, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T. Chem. Soc. Rev., 2009, 38: 1450.
[74]  Alaerts L, Séguin E, Poelman H, Starzyk F T, Jacobs P A, Vos D E D. Chem. Eur. J., 2006, 12: 7353.
[75]  Arai T, Sato T, Kanoh H, Kaneko K, Oguma K, Yanagisawa A. Chem. Eur. J., 2008, 14: 882.
[76]  Arai T, Kawasaki N, Kanoh H. Synlett, 2012, 23: 1549.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133