全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

四元化合物半导体Cu2ZnSnS4:结构、制备、应用及前景

DOI: 10.7536/PC141033, PP. 913-934

Keywords: 铜锌锡硫,结构演变,制备工艺,光电应用,薄膜太阳电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

四元化合物半导体铜锌锡硫(Cu2ZnSnS4,CZTS)由于其四种组成元素在地壳中丰度非常高且安全无毒,因而成本低廉。CZTS作为直接带隙半导体材料,其吸收光谱与太阳辐射光谱匹配性好、光吸收系数高,具有结构与性质可调可控、光电性能优异等优势,是发展绿色、低成本、高效率和稳定薄膜太阳电池的理想核心材料。近年来,国内外研究者对CZTS的结构与性质、制备工艺、应用尤其是通过结构、成分的调控提高其光电转换效率等方面进行了广泛的研究和探讨。本文对CZTS的结构演变、制备工艺、光电性质与应用等进行综述,重点分析了晶体结构、缺陷、表面与界面、合金化等因素对其光伏性能的影响。同时,对CZTS作为新型能量转换材料在光催化和热电等领域的应用进行了探讨。最后对CZTS目前存在的挑战和今后的研究重点进行总结并展望了将来可能的突破方向。

References

[1]  Jaffe J E, Zunger A. Phys. Rev. B, 2001, 64: 241304.
[2]  Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H. Phys. Rev. B, 2013, 88: 045427.
[3]  Paris M, Choubrac L, Lafond A, Guillot-Deudon C, Jobic S. Inorg. Chem., 2014, 53: 8646.
[4]  He J, Sun L, Chen S, Chen Y, Yang P, Chu J. J. Alloys Compd., 2012, 511: 129.
[5]  Chen S, Gong X G, Walsh A, Wei S H. MRS Pro., Cambridge University Press, 2011, 1370: 55.
[6]  Erslev P T, Young M R, Li J V, Siah S C, Chakraborty R, Du H, Lad R J, Buonassisi T, Teeter G. Sol. Energy Mater. Sol. Cells, 2014, 129: 124.
[7]  Zhang X, Shi X, Ye W, Ma C, Wang C. Appl. Phys. A, 2009, 94: 381.
[8]  Chen S, Gong X G, Walsh A, Wei S H. Appl. Phys. Lett., 2010, 96: 021902.
[9]  Chen S, Yang J H, Gong X G, Walsh A, Wei S H. Phys. Rev.B, 2010, 81: 245204.
[10]  Tablero C. J. Phys. Chem. C, 2012, 116: 23224.
[11]  Maeda T, Nakamura S, Wada T. Jpn. J. Appl. Phys., 2012, 51: 10NC11.
[12]  Miles R, Zoppi G, Forbes I. Mater. Today, 2007, 10: 20.
[13]  Todorov T K, Reuter K B, Mitzi D B. Adv. Mater., 2010, 22: E156.
[14]  Barkhouse D A R, Gunawan O, Gokmen T, Todorov T K, Mitzi D B. Prog. Photovoltaics: Res. App., 2012, 20: 6.
[15]  Todorov T K, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi D B. Adv. Energy Mater., 2013, 3: 34.
[16]  Fan F J, Wu L, Gong M, Liu G, Wang Y X, Yu S H, Chen S, Wang L W, Gong X G. ACS Nano, 2013, 7: 1454.
[17]  Cao Y, Xiao Y, Jung J Y, Um H D, Jee S W, Choi H M, Bang J H, Lee J H. ACS Appl. Mater. Intertaces, 2013, 5: 479.
[18]  He J, Lee L T L, Yang S, Li Q, Xiao X, Chen T. ACS Appl. Mater. Interfaces, 2014, 6: 2224.
[19]  Dai P, Zhang G, Chen Y, Jiang H, Feng Z, Lin Z, Zhan J. Chem. Commun., 2012, 48: 3006.
[20]  Xin X, He M, Han W, Jung J, Lin Z. Angew. Chem. Int. Ed., 2011, 50: 11739.
[21]  Wang L, Wang W, Sun S. J. Mater. Chem., 2012, 22: 6553.
[22]  Rovelli L, Tilley S D, Sivula K. ACS Appl. Mater. Interfaces, 2013, 5: 8018.
[23]  李玲(Li L), 郑柳萍(Zheng L), 颜桂炀(Yan G), 潘青山(Pan Q), 化学发展前沿(Scientific Journal of Frontier Chemical Development), 2012, 2: 59.
[24]  Chang Z X, Zhou W H, Kou D X, Zhou Z J, Wu S X.Chem. Commun., 2014, 50: 12726.
[25]  Liu M L, Huang F Q, Chen L D, Chen I W. Appl. Phys. Lett., 2009, 94: 02103.
[26]  Yang H, Jauregui L A, Zhang G, Chen Y P, Wu Y. Nano Lett., 2012, 12: 540.
[27]  Fan F J, Wu L, Yu S H. Energ Environ. Sci., 2014, 7: 190.
[28]  Parasyuk O, Piskach L, Romanyuk Y, Olekseyuk I, Zaremba V, Pekhnyo V. J. Alloys Compd., 2005, 397: 85.
[29]  Fries T, Shapira Y, Palacio F, Morón M C, McIntyre G J, Kershaw R, Wold A, McNiff E. Phys. Rev. B, 1997, 56: 5424.
[30]  Wang C, Chen S, Yang J H, Lang L, Xiang H, Gong X, Walsh A, Wei S H. Chem. Mater., 2014, 26: 3411.
[31]  Chen S, Walsh A, Gong X G, Su H W. Adv. Mater., 2013, 25: 1522.
[32]  Zhao H, Persson C. Thin Solid Films, 2011, 519: 7508.
[33]  Shen S, Wang Q. Chem. Mater., 2013, 25: 1166.
[34]  Fairbrother A, Fontané X, Izquierdo-Roca V, Espíndola-Rodríguez M, López-Marino S, Placidi M, Calvo-Barrio L, Pérez-Rodríguez A, Saucedo E. Sol. Energy Mater. Sol. Cells, 2013, 112: 97.
[35]  Solar Energy's Path Towards Competitiveness. Nat. Mater., 2012, 11: 173.
[36]  Conibeer G. Mater. Today, 2007, 10: 42.
[37]  Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E. IEEE J. Photovolt., 2013, 4: 96.
[38]  Gloeckler M, Sankin I, Zhao Z. IEEE J.Photovolt., 2013, 3: 1389.
[39]  Powalla M, Jackson P, Witte W, Hariskos D, Paetel S, Tschamber C, Wischmann W. Sol. Energy Mater. Sol. Cells, 2013, 119: 51.
[40]  Wada T, Nakamura S, Maeda T. Prog. Photovolt. Res. App., 2012, 20: 520.
[41]  Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I. Phys. Status Solidi (b), 2008, 245: 1772.
[42]  Yoo H, Kim J. Sol. Energy Mater. Sol. Cells, 2011, 95: 239.
[43]  Nitsche R, Sargent D, Wild P. J. Cryst. Growth, 1967, 1: 52.
[44]  Ito K, Nakazawa T. Jpn. J. Appl. Phys., 1988, 27: 2094.
[45]  Katagiri H, Sasaguchi N, Hando S, Hoshino S, Ohashi J, Yokota T. Sol. Energy Mater. Sol. Cells, 1997, 49: 407.
[46]  Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B. Adv. Energy Mater., 2014, 4: 1.
[47]  Fan F J, Wu L, Yu S H. Energy Environ. Sci., 2014, 7: 190.
[48]  (a) Goodman C H L. J. Phys. Chem. Solids, 1958, 6: 305.; (b) Pamplin B R. Nature, 1960, 188: 136.
[49]  Chen S, Gong X G, Walsh A, Wei S H. Phys. Rev. B, 2009, 79: 165211.
[50]  陈时友(Chen S Y), 龚新高(Gong X G), Walsh A, 魏苏淮(Wei S H). 物理 (Physics), 2011, 40: 248.
[51]  Nakamura S, Maeda T, Wada T. Jpn. J. Appl. Phys., 2011, 50: 05FF01.
[52]  Schorr S, Hoebler H J, Tovar M. Eur. J. Mineral., 2007, 19: 65.
[53]  Chen S, Walsh A, Luo Y, Yang J H, Gong X, Wei S H. Phys. Rev. B, 2010, 82: 195203.
[54]  Lu X, Zhuang Z, Peng Q, Li Y. Chem. Commun., 2011, 47: 3141.
[55]  Jimbo K, Kimura R, Kamimura T, Yamada S, Maw W S, Araki H, Oishi K, Katagiri H. Thin Solid Films, 2007, 515: 5997.
[56]  Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw W S, Fukano T, Ito T, Motohiro T. Appl. Phys. Express, 2008, 1: 041201.
[57]  Chawla V, Clemens B. Photovoltaic Specialists Conference (PVSC). Austin: IEEE, 3~8 June 2012. 002990.
[58]  Zhang J, Shao L. Sci. China. E: Technol. Sci., 2009, 52: 269.
[59]  Tanaka T, Kawasaki D, Nishio M, Guo Q, Ogawa H. Phys. Status Solidi (c), 2006, 3: 2844.
[60]  Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A. Thin Solid Films, 2008, 517: 1449.
[61]  Wang K, Gunawan O, Todorov T, Shin B, Chey S, Bojarczuk N, Mitzi D, Guha S. Appl. Phys. Lett., 2010, 97: 143508.
[62]  Weber A, Schmidt S, Abou-Ras D, Schubert-Bischoff P, Denks I, Mainz R, Schock H W. Appl. Phys. Lett., 2009, 95: 041904.
[63]  Katagiri H. Thin Solid Films, 2005, 480: 426.
[64]  Sekiguchi K, Tanaka K, Moriya K,Uchiki H. Phys. Status Solidi (c), 2006, 3: 2618.
[65]  Moholkar A, Shinde S, Babar A, Sim K U, Kwon Y b, Rajpure K, Patil P, Bhosale C, Kim J. Sol. Energy Mater. Sol. Cells, 2011, 85: 1354.
[66]  Thimsen E, Riha S C, Baryshev S V, Martinson A B, Elam J W, Pellin M J. Chem. Mater., 2012, 24: 3188.
[67]  Washio T, Shinji T, Tajima S, Fukano T, Motohiro T, Jimbo K, Katagiri H. J. Mater. Chem., 2012, 22: 4021.
[68]  Kamoun N, Bouzouita H, Rezig B. Thin Solid Films, 2007, 515: 5949.
[69]  Levcenko S, Tezlevan V E, Arushanov E, Schorr S, Unold T. Phys. Rev. B, 2012, 86: 045206.
[70]  Shinde N, Lokhande C, Kim J, Moon J. J. Photoch. Photobio. A, 2012, 235: 14.
[71]  Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, K?tschau I, Schock H W, Schurr R, H?lzing A, Jost S, Hock R. Thin Solid Films, 2009, 517: 2511.
[72]  Scragg J J, Berg D M, Dale P J. J. Electroanal. Chem., 2010, 646: 52.
[73]  Guo Q, Ford G M, Yang W C, Walker B C, Stach E A, Hillhouse H W, Agrawal R. J. Am. Chem. Soc., 2010, 132: 17384.
[74]  Shi C, Shi G, Chen Z, Sun R, Xia M. J. Chin. Ceramic. Soc., 2011, 39: 1108.
[75]  Chen L J, Chuang Y J. Mater. Lett., 2013, 91: 372.
[76]  Sarswat P K, Free M L. J. Cryst. Growth, 2013, 372: 87.
[77]  Tanaka K, Fukui Y, Moritake N, Uchiki H. Sol. Energy Mater. Sol. Cells, 2011, 95: 838.
[78]  Mali S S, Patil B M, Betty C A, Bhosale P N, Oh Y W, Jadkar S R, Devan R S, Ma Y R, Patil P S. Electrochim. Acta, 2012, 66: 216.
[79]  Luo P, Zhao L X, Xu J. Int J. Inorg. Mater., 2012, 1: 79.
[80]  Chane-Ching J Y, Gillorin A, Zaberca O, Balocchi A. Marie X. Chem. Commun., 2011, 47: 5229.
[81]  Wibowo R A, Jung W H, Kim K H. J. Phys. Chem. Solids, 2010, 71: 1702.
[82]  Wang Y, Gong H. J. Alloys Compd., 2011, 509: 9627.
[83]  Zhou Z, Wang Y, Xu D, Zhang Y. Sol. Energy Mater. Sol. Cells, 2010, 94: 2042.
[84]  Scragg J J, Kubart T, W?tjen J T, Ericson T, Linnarsson M K, Platzer-Bj?rkman C. Chem. Mater., 2013, 25: 3162.
[85]  Sugimoto H, Hiroi H, Sakai N, Muraoka S, Katou T. Photovoltaic Specialists Conference (PVSC). Austin: IEEE, 3~8 June 2012. 002997.
[86]  Repins I, Beall C, Vora N, DeHart C, Kuciauskas D, Dippo P, To B, Mann J, Hsu W C, Goodrich A. Sol. Energy Mater. Sol. Cells, 2012, 101: 154.
[87]  Nandur A, White B. Thin film Photovoltaic Absorber Material. State University of New York at Binghamton: APS, 2013.
[88]  Ahmed S, Reuter K B, Gunawan O, Guo L, Romankiw L T, Deligianni H. Adv. Energy Mater., 2012, 2: 253.
[89]  Timmo K, Altosaar M, Raudoja J, Muska K, Pilvet M, Kauk M, Varema T, Danilson M, Volobujeva O, Mellikov E. Sol. Energy Mater. Sol. Cells, 2010, 94: 1889.
[90]  Reshak A, Nouneh K, Kityk I, Bila J, Auluck S, Kamarudin H, Sekkat Z. Int. J. Electrochem. Sci., 2014, 9: 955.
[91]  Chen S, Gong X, Walsh A, Wei S H. Appl. Phys. Lett., 2009, 94: 041903.
[92]  Maeda T, Nakamura S, Wada T. Jpn. J. Appl. Phys., 2011, 50: 04DP07.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133