全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

金纳米粒子和聚合物复合体系分子设计与组装过程的计算机模拟

DOI: 10.7536/PC150169, PP. 848-852

Keywords: 金纳米粒子,聚合物,自组装,计算机模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

金纳米粒子除了拥有纳米粒子的体积效应、表面效应、量子尺寸效应、宏观量子隧道效应等优异性能之外,还有一些特殊性能,如良好的稳定性、抗菌抑菌功能、表面吸收带效应、荧光效应等。量子化学计算方法提供了从分子水平上探究金团簇的催化和反应活性的影响因素,如金团簇的尺寸、形状、电子状态、活性位点的类型和结构等。分子动力学可以更好地模拟纳米粒子与配体和溶剂的相互作用方式,同时给出热力学和动力学行为。耗散粒子动力学等介观模拟方法则被应用到金纳米粒子和聚合物复合体系自组装过程的研究,并可以给出调控自组装结构的有效方案。以高分子与纳米粒子复合物为研究对象,明晰影响复合物结构和性质的主导因素,探索复合物调控机制,提出决定复合物功能的主控因素,进一步理解高分子与纳米粒子复合物的本质,可以为实验上制备、优化新型高分子与纳米粒子复合物材料提供可靠的理论帮助。

References

[1]  Bulusu S, Zeng X C. J. Chem. Phys., 2006, 125: 154303.
[2]  Pal R, Wang L M, Huang W, Wang L S, Zeng X C. J. Chem. Phys., 2011, 134: 54306.
[3]  Bulusu S, Li X, Wang L S, Zeng X C. J. Phys. Chem. C, 2007, 111: 41908.
[4]  Gu X, Bulusu S, Li X, Zeng X C, Li J, Gong X G, Wang L S. J. Phys. Chem. C, 2007, 111: 8228.
[5]  Feng J, Pandey R B, Berry R J, Farmer B L, Naik R R, Heinz H. Soft Matter, 2011, 7: 2113.
[6]  Nie Z H, Fava D, Kumacheva E, Zou S, Walker G C, Rubinstein M. Nat. Mater., 2007, 6: 609.
[7]  Fava D, Nie Z, Winnik M A, Kumacheva E. Adv. Mater., 2008, 20: 4318.
[8]  Nie Z H, Fava D, Rubinstein M, Kumacheva E. J. Am. Chem. Soc., 2008, 130: 3683.
[9]  Liu K, Nie Z H, Zhao N N, Li W, Rubinstein M, Kumacheva E. Science, 2010, 329: 197.
[10]  Liu K, Ahmed A, Chung S, Sugikawa K, Wu G X, Nie Z H, Gordon R, Kumacheva E. ACS Nano, 2013, 7: 5901.
[11]  Wu Z N, Dong C W, Li Y C, Hao H X, Zhang H, Lu Z Y, Yang B. Angew. Chem. Int. Ed., 2013, 52: 9952.
[12]  He J, Zhang P, Babu T, Liu Y J, Gong J L, Nie Z H. Chem. Commun., 2013, 49: 576.
[13]  He J, Huang X L, Li Y C, Liu Y J, Babu T, Aronova M A, Wang S J, Lu Z Y, Chen X Y, Nie Z H. J. Am. Chem. Soc., 2013, 135: 7974.
[14]  He J, Liu Y J, Babu T, Wei Z J, Nie Z H. J. Am. Chem. Soc., 2012, 134: 11342.
[15]  Lin J, Wang S J, Huang P, Wang Z, Chen S H, Niu G, Li W W, He J, Cui D X, Lu G M, Chen X Y, Nie Z H. ACS Nano, 2013, 7: 5320.
[16]  Huang P, Lin J, Li W W, Rong P F, Wang Z, Wang S J, Wang X P, Sun X L, Aronova M, Niu G, Leapman R D, Nie Z H, Chen X Y. Angew. Chem. Int. Ed., 2013, 52: 13958.
[17]  Liu Y J, Li Y C, He J, Duelge K J, Lu Z Y, Nie Z H. J. Am. Chem. Soc., 2014, 136: 2602.
[18]  Nie Z H, Petukhova A, Kumacheva E. Nat. Nanotechnol., 2010, 5: 15.
[19]  He J, Liu Y J, Hood T C, Zhang P, Gong J L, Nie Z H. Nanoscale, 2013, 5: 5151.
[20]  Link S, El-Sayed M A. Int. Rev. Phys. Chem., 2000, 19: 409.
[21]  Whetten R L, Khoury J T, Alvarez M M, Murthy S, Vezmar I, Wang Z L, Stephens P W, Cleveland C L, Luedtke W D, Landman U. Adv. Mater., 1996, 8: 428.
[22]  Li Y, Wang D Q, Wang W, Li Y C, Huang X R, Sun C C, Jin M X. Chem. Res. Chinese U., 2014, 30: 144.
[23]  Li Y, Zhu Y L, Li Y C, Qian H J, Sun C C. Mol. Simulat., 2014, 40: 449.
[24]  Wu Z N, Li Y C, Liu J L, Lu Z Y, Zhang H, Yang B. Angew. Chem. Int. Ed., 2014, 53: 12196.
[25]  Gao Y, Zeng X C. J. Am. Chem. Soc., 2005, 127: 3698.
[26]  Shao N, Huang W, Gao Y, Wang L M, Li X, Wang L S, Zeng X C. J. Am. Chem. Soc., 2010, 132: 6596.
[27]  Iori F, Corni S. J. Comput. Chem., 2008, 29: 1656.
[28]  Iori F, Di Felice R, Molinari E, Corni S. J. Comput. Chem., 2009, 30: 1465.
[29]  Hughes Z E, Wright L B, Walsh T R. Langmuir, 2013, 29: 13217.
[30]  Wright L B, Rodger P M, Corni S, Walsh T R. J. Chem. Theory Comput., 2013, 9: 1616.
[31]  Kleiner K, Comas-Vives A, Naderian M, Mueller J E, Fantauzzi D, Mesgar M, Keith J A, Anton J, Jacob T. Adv. Phys. Chem., 2011, 2011: 11.
[32]  Bae G T, Aikens C M. J. Phys. Chem. A, 2013, 117: 10438.
[33]  Rappe A K, Casewit C J, Colwell K S, Goddard W A, Skiff W M. J. Am. Chem. Soc., 1992, 114: 10024.
[34]  O'Boyle N M, Banck M, James C A, Morley C, Vandermeersch T, Hutchison G R. J. Cheminform., 2011, 3: 33.
[35]  Garberoglio G. J. Comput. Chem., 2012, 33: 2204.
[36]  Huber S E, Warakulwit C, Limtrakul J, Tsukuda T, Probst M. Nanoscale, 2012, 4: 585.
[37]  Kokh D B, Corni S, Winn P J, Hoefling M, Gottschalk K E, Wade R C. J. Chem. Theory Comput., 2010, 6: 1753.
[38]  Leng Y S, Krstic P S, Wells J C, Cummings P T, Dean D J. J. Chem. Phys., 2005, 122: 244721.
[39]  Legenski N, Zhou C G, Zhang Q F, Han B, Wu J P, Chen L A, Cheng H S, Forrey R C. J. Comput. Chem., 2011, 32: 1711.
[40]  Lv J, Wang Y C, Zhu L, Ma Y M. J. Chem. Phys., 2012, 137: 84104.
[41]  Iacovella C R, Glotzer S C. Soft Matter, 2009, 5: 4492.
[42]  Iacovella C R, Glotzer S C. Nano Lett., 2009, 9: 1206.
[43]  Phillips C L, Iacovella C R, Glotzer S C. Soft Matter, 2010, 6: 1693.
[44]  Li Y, Li Y C. Chem. J. Chinese U., 2014, 35: 1037.
[45]  Chen T, Lamm M H, Glotzer S C. J. Chem. Phys., 2004, 121: 3919.
[46]  Santos A, Millan J A, Glotzer S C. Nanoscale, 2012, 4: 2640.
[47]  Li Y C, Liu H, Huang X R, Sun C C. Chem. J. Chinese U., 2011, 32: 1845.
[48]  Li Y C, Liu H, Huang X R, Sun C C. Mol. Simulat., 2011, 37: 875.
[49]  Li Y C, Liu H, Huang X R, Sun C C. Chem. J. Chinese U., 2011, 32: 2421.
[50]  Li Y C, Wang Y L, Li Z W, Liu H, Lü Z Y. Chin. Sci. Bull., 2013, 58: 3595.
[51]  Zhu Y L, Liu H, Li Z W, Qian H J, Milano G, Lu Z Y. J. Comput. Chem., 2013, 34: 2197.
[52]  Ma Z W, Li R K Y. J. Colloid Interf. Sci., 2011, 363: 241.
[53]  Cui J, Li W, Jiang W. Chinese J. Poly. Sci., 2013, 31: 1225.
[54]  Corma A, Concepcion P, Boronat M, Sabater M J, Navas J, Yacaman M J, Larios E, Posadas A, Arturo Lopez-Quintela M, Buceta D, Mendoza E, Guilera G, Mayoral A. Nat. Chem., 2013, 5: 775.
[55]  Schmid G. Chem. Soc. Rev., 2008, 37: 1909.
[56]  Shichibu Y, Suzuki K, Konishi K. Nanoscale, 2012, 4: 4125.
[57]  Bockstaller M R, Thomas E L. J. Phys. Chem. B, 2003, 107: 10017.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133