全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2012 

Non-Condon电子转移速率理论与含时波包方法

, PP. 1166-1174

Keywords: 电子转移,non-Condon效应,含时波包,能量转移

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着电子转移理论在化学、材料科学、生物医学等领域的广泛应用,人们针对不同体系提出了多种电子转移理论模型。本文主要总结了近年来我们在non-Condon电子转移理论以及含时波包方法等方面的相关工作。首先阐述包含non-Condon效应的电子转移速率理论并用于二噻吩四硫富瓦烯有机半导体迁移率的计算。而后介绍了包含量子相干效应的含时波包方法,并初步用于研究二聚芴分子三三态能量转移过程。另外,本文还阐述了如何采用量子化学计算获得电子转移速率的结构参数。

References

[1]  Marcus R A. Rev. Mod. Phys., 1993, 65: 599-610
[2]  Hush N S. Coord. Chem. Rev., 1985, 64: 135-157
[3]  Zhao Y, Milnikov G, Nakamura H. J. Chem. Phys., 2004, 121: 8854-8860
[4]  Zhao Y, Liang W Z. Phys. Rev. A, 2006, 74: art. no. 032706
[5]  Zhu W J, Zhao Y. J. Chem. Phys., 2007, 126: art. no. 184105
[6]  Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539-541
[7]  Zhao Y, Liang W Z. J. Chem. Phys., 2009, 130: art. no. 034111
[8]  Zhong X X, Zhao Y. J. Chem. Phys., 2011, 135: art. no. 134110
[9]  Daizadeh I, Medvedve E S, Stuchebrukhov A A. Proc. Natl. Acad. Sci. USA, 1997, 94: 3703-3708
[10]  Medvedve E S, Stuchebrukhov A A. J. Chem. Phys., 1997, 107: 3821-3831
[11]  Leufgen M, Rost O, Gould C, Schmidt G, Geurts J, Molenkamp L W, Oxtoby N S, Mas-Torrent M, Cricillers N, Veciana J, Rovira C. Org. Electron., 2008, 9: 1101-1106
[12]  Hannewald K, Bobbert P A. Appl. Phys. Lett., 2004, 85: 1535-1537
[13]  Ishizaki A, Tanimura Y. J. Phys. Soc. Jpn., 2005, 74: 3131-3134
[14]  Li X Q, Zhang W K, Cui P, Shao J S, Ma Z S, Yan Y J. Phys. Rev. A, 2004, 69: art. no. 085315
[15]  Xu R X, Cui P, Li X Q, Mo Y, Yan Y J. J. Chem. Phys., 2005, 122: art. no. 041103
[16]  Li X Q, Luo J Y, Yang Y G, Cui P, Yan Y J. Phys. Rev. B, 2005, 71: art. no. 205304
[17]  Li J, Kondov I, Wang H, Thoss M. J. Phys. Chem. C, 2010, 114: 18481-18493
[18]  Zhao Y. J. Theor. Comput. Chem., 2008, 7: 869-877
[19]  Kubo R. J. Phys. Soc. Jpn., 1954, 9: 935-944
[20]  Haken H, Reineker P. Z. Phys., 1972, 249: 253-268
[21]  Goychuk I, H?nggi P. Adv. Phys., 2005, 54: 525-584
[22]  Cheng Y C, Silbey R J. Phys. Rev. A, 2004, 69: art. no. 052325
[23]  Troisi A. Chem. Soc. Rev., 2011, 40: 2347-2358
[24]  Kubo R. Rep. Prog. Phys., 1966, 29: 255-284
[25]  Rice S O. Bell Syst. Tech. J., 1944, 23: 282-332
[26]  Shinozuka M. J. Acoust. Soc. Am., 1971, 49: 357-368
[27]  Billah K Y R, Shinozuka M. Phys. Rev. A, 1990, 42: 7492-7495
[28]  Tal-Ezer H, Kosloff R. J. Chem. Phys., 1984, 81: 3967-3971
[29]  Matyushov D V. Acc. Chem. Res., 2007, 40: 294-301
[30]  Valeev E F, Coropceanu V, da Silva Filho D, Salman S, Bredas J L. J. Am. Chem. Soc., 2006, 128: 9882-9886
[31]  Farazdel A, Dupuis M, Clementi E, Aviram A. J. Am. Chem. Soc., 1990, 112: 4206-4214
[32]  Qin H M, Zhong X X, Si Y B, Zhang W W, Zhao Y. J. Phys. Chem. A, 2011, 115: 3116-3121
[33]  You Z Q, Shao Y, Hsu C P. Chem. Phys. Lett., 2004, 390: 116-123
[34]  You Z Q, Hsu C P, Fleming G R. J. Chem. Phys., 2006, 124: art. no. 044506
[35]  Cave R J, Newton M D. Chem. Phys. Lett., 1996, 249: 15-19
[36]  Wang H, Thoss M. New J. Phys., 2008, 10: art. no. 115005
[37]  Weiss U, Wollensak M. Phys. Rev. B, 1988, 37: 2729-2732
[38]  Zhao Y, Liang W Z, Nakamura H. J. Phys. Chem. A, 2006, 110: 8204-8212
[39]  Weis J V, Abdelwahed S H, Shukla R, Rathore R, Ratner M A, Wasielewski M R. Science, 2010, 328: 1547-1550
[40]  Voityuk A A. J. Phys. Chem. C, 2010, 114: 20236-20239
[41]  Egorov S A, Everitt K F, Skinner J L. J. Phys. Chem. A, 1999, 103: 9494-9499
[42]  Thoss M, Wang H, Miller W H. J. Chem. Phys., 2001, 115: 2991-3005
[43]  Marcus R A. J. Chem. Phys., 1956, 24: 966-978
[44]  Marcus R A. Biochim. Biophys. Acta, 1985, 811: 265-322
[45]  Zhu W J, Han M M, Zhao Y. Chinese J. Chem. Phys., 2007, 20: 217-223
[46]  Zhang W W, Zhu W J, Liang W Z, Zhao Y, Nelsen S F. J. Phys. Chem. B, 2008, 112: 11079-11086
[47]  Zhu W J, Zhao Y. J. Chem. Phys., 2008, 129: art. no. 184111
[48]  Nelsen S F, Konradsson A E, Weaver M N, Stephenson R M, Lockard J V, Zink J I, Zhao Y. J. Phys. Chem. B, 2007, 111: 6776-6781
[49]  Telo J P, Nelsen S F, Zhao Y. J. Phys. Chem. A, 2009, 113: 7730-7736
[50]  Nan G J, Wang L J, Yang X D, Shuai Z G, Zhao Y. J. Chem. Phys., 2009, 130: 024704
[51]  Horowitz G, Fichou D, Peng X, Xu Z, Garnier F. Solid State. Commun., 1989, 72: 381-384
[52]  Zhang W W, Liang W Z, Zhao Y. J. Chem. Phys., 2010, 133: art. no. 024501
[53]  Zhang W W, Zhao Y, Liang W Z. Sci. China Chem., 2011, 54: 707-714
[54]  Si Y B, Zhong X X, Zhang W W, Zhao Y. Chin. J. Chem. Phys., 2011, 24: 538-546
[55]  Skourtis S S, Balabin A I, Kawatsu T, Beratan N D. Proc Natl. Acad. Sci. USA, 2005, 102: 3552-3557
[56]  Troisi A, Orlandi G. Phys. Rev. Lett., 2006, 96: art. no. 086601
[57]  Wang L J, Li Q K, Shuai Z G, Chen L P, Shi Q. Phys. Chem. Chem. Phys., 2010, 12: 3309-3314
[58]  Schein L B, Duck C B, McGhie A R. Phys. Rev. Lett., 1978, 40: 197-200
[59]  Wang D, Chen L, Zheng R, Wang L, Shi Q. J. Chem. Phys., 2010, 132: art. no. 081101
[60]  Chu X M, Zhao Y. J. Theor. Comput. Chem., 2009, 8: 1295-1307
[61]  Anderson P W, Weiss P R., Rev. Mod. Phys., 1953, 25: 269-276
[62]  Leforestier C, Bisseling R H, Cerjan C, Feit M D, Friesner R, Guldberg A, Hammerich A, Jolicard G, Karrlein W, Meyer H D, Lipkin N, Roncero O, Kosloff R. J. Comput. Phys., 1991, 94: 59-80.
[63]  Matyushov D V. J. Chem. Phys., 2004, 120: 7532-7556
[64]  Nelsen S F, Blackstock S C, Kim Y. J. Am. Chem. Soc., 1987, 109: 677-682
[65]  Shi B, Gao F, Liang W Z. Chem. Phys., 2012, 394: 56-63
[66]  Wu Q, Voorhis T V. J. Chem. Phys., 2006, 125: art. no. 164105
[67]  Koopmans T. Physica, 1934, 1: 104-113
[68]  Voityuk A A, Rosch N J. J. Chem. Phys., 2002, 117: 5607-5616
[69]  You Z Q, Hsu C P. J. Chem. Phys., 2010, 133: art. no. 074105
[70]  Makri N, Makarov D E. J. Chem. Phys., 1995, 102: 4600-4610
[71]  Weiss U, Sassetti M, Negele T, Wollensak M. Z. Phys. B, 1991, 84: 471-482
[72]  Mak C H, Egger R. Phys. Rev. E, 1994, 49: 1997-2008
[73]  Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C, Pople J A. Gaussian03; Gaussian: Pittsburgh, PA, 2003
[74]  Kresse G, Furthmuller J. Comput. Mater. Sci., 1996, 6: 15-50
[75]  Zhao Y, Liang W Z. Chem. Soc. Rev., 2012, 41: 1075-1087
[76]  Zhang W W, Zhong X X, Zhao Y. J. Phys. Chem. A, to be submitted

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133