全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2012 

蛋白质二维红外相干光谱的理论研究

, PP. 1065-1081

Keywords: 多肽,非线性响应,酰胺振动模式,二维红外光谱

Full-Text   Cite this paper   Add to My Lib

Abstract:

多肽对红外激光脉冲的非线性响应中包含了丰富的结构动力学信息。本文以肽链的酰胺振动跃迁为例,提出了模拟二维红外相干光谱的理论方案。文中首先介绍了激子模型下非线性响应的微扰图像,并基于激子模型、经典分子动力学模拟和密度泛函静电势,构建酰胺振动模式有效波动哈密顿量。采用随机刘维尔方程(SLE)、数值演化(NP)、高斯波动的累积展开等方法计算非线性响应光谱。文章最后对多肽及多肽复合物等体系的二维红外信号进行模拟和讨论。

References

[1]  Segel D J, Bachmann A, Hofrichter J, Hodgson K O, Doniach S, Kiefhaber T. J. Mol. Bio., 1999, 288: 489-499
[2]  Arai S, Hirai M. Biophysical J., 1999, 76: 2192-2197
[3]  Pfuhl M, Driscoll P C. Philos. Trans. Roy. Soc. London Ser. A, 2000, 358: 513-545
[4]  Wutrich K. New York: Wiley, 1995.
[5]  Mantsch H H, Chapman D. Infrared Spectroscopy of Biomolecules. New York: Wiley-Liss, 1996
[6]  Larsen O F A, Bodis P, Buma W J, Hannam J S, Leigh D A, Woutersen S. P. Natl. Acad. Sci. USA, 2005, 102: 13378- 13382
[7]  Wang J, Chen J, Hochstrasser R. J. Phys. Chem. B, 2006, 110: 7545-7555
[8]  Venkatramani R, Mukamel S. J. Chem. Phys., 2002, 117: 11089-11101
[9]  Asplund M C, Zanni M T, Hochstrasser R M. P. Natl. Acad. Sci. USA, 2000, 97: 8219-8224
[10]  Kim Y S, Hochstrasser R M. P. Natl. Acad. Sci. USA, 2005, 102: 11185-11190
[11]  Shakhnovich E I. Curr. Opin. Struc. Biol., 1997, 7: 29-40
[12]  Karplus M, McCammon J A. Nature Structural Biology, 2002, 9: 646-652
[13]  McCammon J, Harvey S. Dynamics of Proteins and Nucleic Acids. Cambridge: Cambridge University Press, 1987
[14]  Daura X, Gademann K, Schafer H, Jaun B, Seebach D, van Gunsteren W F. J. Am. Chem. Soc., 2001, 123: 2393-2404
[15]  Wolynes P G, Onuchic J N, Thirumalai D. Science, 1995, 267: 1619-1620
[16]  Gnanakaran S, Nymeyer H, Portman J, Sanbonmatsu K Y, Garcia A E. Curr. Opin. Struc. Biol., 2003, 13: 168-174
[17]  Mukamel S, Abramavicius D. Chem. Rev., 2004, 104: 2073-2098
[18]  Mukamel S. Principles of Nonlinear Optical Spectroscopy. New York: Oxford University Press, 1995
[19]  Zhuang W, Abramavicius D, Hayashi T, Mukamel S. J. Phys. Chem. B, 2004, 108: 18034-18045
[20]  Krimm S, Bandekar J. Adv. Protein Chem., 1986, 38: 181-364
[21]  Torii H, Tasumi M. J. Chem. Phys., 1992, 96: 3379-3387
[22]  Kwac K, Cho M H. J. Chem. Phys., 2003, 119: 2256-2263
[23]  Zanni M T, Asplund M C, Hochstrasser R M. J. Chem. Phys., 2001, 114: 4579-4590
[24]  Hayashi T, Jansen T L, Zhuang W, Mukamel S. J. Phys. Chem. A, 2005, 109: 64-82
[25]  Kubo R. J. Math. Phys., 1963, 4: 174-183
[26]  Freed J H, Bruno G V, Polnaszek C F. J. Phys. Chem., 1971, 75: 3385-3399
[27]  Schneider D J, Freed J H. Lasers, Molecules, and Methods (Eds. Hirschfelder J O, Wyatt R E, Coalson R D). New York: John Wiley & Sons, 1989, vol. LXXIII of Advances in Chemical Physics, 387
[28]  Sanda F, Mukamel S. J. Chem. Phys., 2006, 125: art. no. 014507
[29]  Woutersen S, Hamm P. J. Chem. Phys., 2001, 114: 2727-2737
[30]  Hamm P, Lim M H, Hochstrasser R M. J. Phys. Chem. B, 1998, 102: 6123-6138
[31]  Jansen T L, Zhuang W, Mukamel S. Journal of Chemical Physics, 2004, 121: 10577-10598
[32]  No镕, Fischer S. Curr. Opin. Struct. Biol., 2008, 18: 154-162
[33]  Chodera J D, Singhal N, Pande V S, Dill K A, Swope W C. J. Chem. Phys., 2007, 126: art. no. 155101
[34]  Sriraman S, Kevrekidis I G, Hummer G. J. Phys. Chem. B, 2005, 109: 6479-6484
[35]  Bowman G R, Huang X, . Pande V S. Cell Research, 2010, 20: 622-630
[36]  Smith A W, Lessing J, Ganim Z, Peng C S, Tokmakoff A, Roy S, Jansen T L C, Knoester J. J. Phys. Chem. B, 2010, 114: 10913-10924
[37]  Stryer L. Biochemistry, 2nd ed, New York: W. H. Freeman Company, 1995
[38]  Balbach J. J. Am. Chem. Soc., 2000, 122: 5887-5888
[39]  Torii H, Tasumi M. J. Raman Spec., 1998, 29: 81-86
[40]  Demirdoven N, Cheatum C M, Chung H S, Khalil M, Knoester J, Tokmakoff A. J. Am. Chem. Soc., 2004, 126: 7981-7990
[41]  Wang T, Zhu Y J, Getahun Z, Du D G, Huang C Y, DeGrado W F, Gai F. J. Phys. Chem. B, 2004, 108: 15301-15310
[42]  Zheng J R, Kwak K, Asbury J, Chen X, Piletic I R, Fayer M D. Science, 2005, 309: 1338-1343
[43]  Kolano C, Helbing J, Kozinski M, Sander W, Hamm P. Nature, 2006, 444: 469-472
[44]  Zanni M T, Ge N H, Kim Y S, Hochstrasser R M. P. Natl. Acad. Sci. USA, 2001, 98: 11265-11270
[45]  Onuchic J N, LutheySchulten Z, Wolynes P G. Annu. Rev. Phys. Chem., 1997, 48: 545-600
[46]  Bryngelson J D, Onuchic J N, Socci N D, Wolynes P G. Proteins-Structure Function and Genetics, 1995, 21: 167-195
[47]  Kubo R. Stochastic Processes in Chemical Physics(Ed. Shuler K E). New York: John Wiley and Sons, 1969, vol. XV of Advances in Chemical Physics, 101
[48]  Gamliel D, Levanon H. Stochastic Processes in Magnetic Resonance. River Edge, NJ: World Scientific, 1995
[49]  MacPhail R A, Snyder R G, Strauss H L. J. Chem. Phys., 1982, 77: 1118-1137
[50]  Turner J J, Gordon C M, Howdle S M. J. Phys. Chem., 1995, 99: 17532-17538
[51]  Kwac K, Cho M H. J. Chem. Phys., 2003, 119: 2247-2255
[52]  Schweitzer-Stenner R. Biophys. J., 2002, 83: 523-532
[53]  Buchete N V, Hummer G. J. Phys. Chem. B, 2008, 112: 6057-6069
[54]  Swope W C, Pitera J W, Suits F. J. Phys. Chem. B, 2004, 108: 6571-6581

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133