全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2012 

电负性均衡

, PP. 1038-1049

Keywords: 电负性及其均衡,分子中的电荷分布,Fukui函数,硬度和软度,电负性均衡方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

电负性是分子中一个原子把电子拉向它自身的能力,是化学理论的基本概念之一。继Pauling建立第一个电负性标度后,提出了众多的电负性标度。只是在密度泛函理论的基础上,电负性概念和电负性均衡原理,才被精密地论证。近二十多年来,电负性理论的重要发展是应用电负性均衡模型或方法,可以快速地计算分子体系的电荷分布,从而确定分子的其他性质,甚至包括分子的结构和反应性指标。通常的电负性均衡方法只把分子划分到原子区域,虽然简单直观,但其精度和应用范围受到限制。原子与键电负性均衡方法,把分子划分到包括原子区域、化学键区域和孤对电子区域,能够较快速精密地计算分子的电荷分布和其他性质,并被应用到构建新一代可极化或浮动电荷力场的探索中,有广阔的应用前景。

References

[1]  Sanderson R T. Polar Covalence, New York: Academic Press, 1983; Chemical Bonds and Bond Energy, NY: Academic Press, 1976
[2]  Bergmann D, Hinze J. Angew. Chem. Int. Ed. Engl. 1996, 35: 150-163
[3]  杨频(Yang P). 分子结构参量及其与物性关联规律(Molecular Structure Parameter and Its Correlation Regularity with Properties), 北京, 科学出版社(Beijing: Science Press), 2007
[4]  Parr R G, Donnelly R A, Levy N, Palke W E. J. Chem. Phys., 1978, 68: 3801-3807
[5]  Huheey J E. Inorganic Chemistry, New York: Harper & Row, 1978
[6]  Slater J. Phys. Rev., 1929, 34: 1293-1322
[7]  Vleck J H V. J. Chem. Phys., 1934, 2: 20-31
[8]  Walsh A D. Discuss. Faraday Soc. 1947, 2: 1-24
[9]  Hotop H, Lineberger W C. J. Phys. Chem. Ref. Data, 1975, 4: 539-577
[10]  Iczkowski R P, Margrave J L. J. Am. Chem. Soc., 1961, 83: 3547-3551
[11]  Huheey J E. J. Phys. Chem., 1965, 69: 3284-3291
[12]  Hinze J, Jaffé H H. Can. J. Chem., 1963, 41: 1315-1328
[13]  Hinze J, Jaffé H H. J. Phys. Chem., 1963, 67: 1501-1506
[14]  Politzer P, Weinstein H. J. Chem. Phys., 1979, 71: 4218-4220
[15]  Pearson R G. J. Am. Chem. Soc., 1963, 85: 3533-3539
[16]  Parr P G, Pearson R G. J. Am. Chem. Soc., 193, 105: 7512-7516
[17]  Mortier W J, Ghosh S K, Shankar S. J. Am. Chem. Soc., 1986, 108: 4315-4320
[18]  Darrin M. Y., Yang W. J. Chem. Phys., 1996, 104: 159-172
[19]  Yang Z Z, Shen E Z. J. Mol. Struct. (Theochem), 1994, 312: 167-173
[20]  杨忠志(Yang Z Z), 沈尔忠(Shen E Z). 中国科学(B辑)(Scientia Sinica Chimica), 1995, 25: 1233-1239
[21]  Yang Z Z, Wang C S. J. Phys. Chem. A, 1997, 101: 6315-6321
[22]  Wang C S, Zhao D X, Yang Z Z. Chem. Phys. Lett., 2000, 330: 132-138
[23]  Cong Y, Yang Z Z. Chem. Phys. Lett., 2000, 316: 324-329
[24]  Cong Y, Yang Z Z, Wang C S, Liu X C, Bao X H. Chem. Phys. Lett., 2002, 357: 59-64
[25]  Yang Z Z, Cui B Q, J. Chem. Theory Comput., 2007, 3: 1561-1568
[26]  Yang Z Z, Wu Y, Zhao D X. J. Chem. Phys., 2004, 120: 2541-2557
[27]  Yang Z Z, Zhang Q. J. Comput. Chem., 2006, 27: 1-10
[28]  Chen S L, Zhao D X, Yang Z Z. J. Comput. Chem., 2011, 32: 338-348
[29]  Allred A L, Rochow E G, J. Inorg. Nucl. Chem., 1958, 5: 264-268
[30]  Hinze J, Whitehead M A, Jaffé H H. J. Am. Chem. Soc., 1963, 85: 148-154
[31]  Pritchard H O. J. Am. Chem. Soc., 1963, 85: 1876-1876
[32]  Mortier W J, Genechten K V, Gasteiger J. J. Am. Chem. Soc., 1985, 107: 829-835
[33]  Nalewajski R F. J. Am. Chem. Soc., 1984, 106: 944-945
[34]  Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J P. J. Phys. Chem. A, 2002, 106: 7887-7894
[35]  Bultinck P, Langenaeker W, Lahorte P, De Proft F, Geerlings P, Waroquier M, Tollenaere J P. J. Phys. Chem. A, 2002, 106: 7895-7901
[36]  Rappé A K, Goddard W A. J. Phys. Chem., 1991, 95: 3358-3363
[37]  Smirnov K S, van de Graaf B. J. Chem. Soc. Faraday Trans., 1996, 92: 2469-2474
[38]  Chelli R, Procacci P. J. Chem. Phys., 2002, 117: 9175-9189
[39]  Wang C S, Yang Z Z. J. Chem. Phys., 1999, 110: 6189-6197
[40]  Yang Z Z, Wang C S, Tang A Q. Science in China (Ser. B), 1998, 41: 331-336
[41]  Yang Z Z, Wang C S. J. Theor. Comput. Chem., 2003, 2: 273-299
[42]  Wu Y, Yang Z Z. J. Phys. Chem. A, 2004, 108: 7563-7576
[43]  钱萍(Qian P), 杨忠志(Yang Z Z). 中国科学B辑(Scientia Sinica Chimica), 2006, 36(4): 284-298
[44]  Yang Z Z, Li X. J. Phys. Chem. A (Letters), 2005, 109: 3517-3520
[45]  Li X, Yang Z Z. J. Chem. Phys., 2005, 122: 084514
[46]  Li X, Yang Z Z. J. Phys. Chem. A, 2005, 109: 4102-4111
[47]  Zhang Q, Yang Z Z. Chem. Phys. Lett., 2005, 403: 242-247
[48]  Yang Z Z, Qian P. J. Chem. Phys., 2006, 125: 064311-064316
[49]  Wang F F, Zhao D X, Gong L D. Theoretical Chem. Account, 2009, 124: 139-150
[50]  Zhao D X, Liu C, Wang F F, Yu C Y, G L D, Liu S B, Yang Z Z. J. Chem. Theory Comput., 2010, 6: 795-804
[51]  Zhao D X, Yu L, Gong L D, Liu C, Yang Z Z. J. Chem. Phys., 2011, 134: artn. no. 194115
[52]  Pauling L. J. Am. Chem. Soc., 1932, 54: 3570-3582; Pauling L. The Nature of the Chemical bond, 3rd ed. Ithaca and NY: Cornell University Press, 1960
[53]  Mulliken R S. J. Chem. Phys., 1934, 2: 782-793
[54]  Sanderson R T. J. Chem. Educ., 1952, 29: 539-544; 1954, 31: 238-245
[55]  Sanderson R T. Science, 1951, 114: 670-672
[56]  Sen K D, J?rgensen C K. Electronegativity-Structure and Bonding 66. Berlin Heidelberg & New York, Springer-Verlag, 1987
[57]  Parr R G, Yang W T. Density-Functional Theory of Atoms and Molecules, New York: Oxford University press, 1989
[58]  Gerrlings P, De Proft F, Langenaeker W. Chem. Rev., 2003, 103: 1793-1873
[59]  Hinze, J. Fortschr. Chem. Forsch, 1968, 93: 448-482
[60]  Condon E U, Shortley G H. The Theory of Atomic Spectra, Cambridge: Cambridge University Press, 1953
[61]  Moffitt W. Rep. Prog. Phys., 1954, 17: 173-200
[62]  Companion A L, Ellison F O. J. Chem. Phys., 1958, 28: 1-9
[63]  Gordy W. Phys. Rev., 1946, 69: 604-607
[64]  Huheey J E. J. Phys. Chem., 1966, 70: 2086-2092
[65]  Bratsch S G. J. Chem. Educ., 1985, 62: 101-103
[66]  Mullay J. J. Am. Chem. Soc., 1984, 106: 5842-5847
[67]  Hinze J, Jaffé H H. J. Am. Chem. Soc., 1962, 84: 540-546

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133