全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

几类过渡金属配合物催化的烯烃硅氢化反应机理

DOI: 10.7536/PC130745, PP. 345-357

Keywords: 过渡金属配合物,催化剂,烯烃,硅氢化,反应机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

有机硅材料是一种功能独特,性能优异的化工新材料,广泛应用于工业、农业、医药等各大领域。其种类繁多,如硅油、硅橡胶、硅树脂、硅烷等,它们的主要成分均为有机硅化合物,且均非自然界中存在的天然物质,需人工合成。目前,烯烃硅氢化反应是制备有机硅化合物的重要方法之一。该方法简单而直接,且具有原子经济性,备受人们的亲睐。这类反应需要在催化剂的作用下才能发生,因而过渡金属催化剂的设计和机理的研究一直为实验和理论工作者所关注。本文综述了近年来过渡金属配合物催化剂及其催化烯烃硅氢化反应的机理。重点介绍了Pt、Rh、Ru、Zr等过渡金属配合物的不同催化作用机制,希望为以后的研究提供思路和启发。

References

[1]  杜作栋(Du Z D), 陈剑华(Chen J H), 贝小来(Bei X L). 有机硅化学(Organosilicon Chemistry). 北京: 高等教育出版社(Beijing: Higher Education Press), 1990. 40: 102.
[2]  Watanabe H, Aoki M, Sakurai N, Watanabe K, Nagai Y. J. Organomet. Chem., 1978, 160(2): C1.
[3]  Skvortsov N K, Spevak V N, Pashnova L V. Russ. J. Gen. Chem., 1997, 67(3): 487.
[4]  黄光佛(Huang G F), 李盛彪(Li S B), 孙争光(Sun Z G), 黄世强(Huang S Q). 分子催化(Journal of Molecular Catalysis), 2000, 14(6): 409.
[5]  管雁(Guan Y), 吴清州(Wu Q Z), 陈关喜(Chen G X), 冯建跃(Feng J Y), 莫卫民(Mo W M). 化学研究(Chemical Research), 2010, 21(2): 100.
[6]  柯颖芬(Ke Y F). 浙江大学硕士学位论文(Master Dissertation of Zhejiang University), 2006.
[7]  Brookhart M, Grant B E. J. Am. Chem. Soc., 1993, 115(6): 2151.
[8]  Sakaki S, Mizoe N, Sugimoto M. Organometallics, 1998, 17(12): 2510.
[9]  Sakaki S, Sumimoto M, Fukuhara M, Sugimoto M, Fujimoto H, Matsuzaki S. Organometallics, 2002, 21(18): 3788.
[10]  Giorgi G, Angelis F D, Re N, Sgamellotti A. J. Mol. Struc. THEOCHEM, 2003, 623(1/3): 277.
[11]  Stein J, Lewis L N, Gao Y, Scott R A. J. Am. Chem. Soc., 1999, 121(15): 3693.
[12]  Steffanut P, Osborn J A, DeCian A, Fisher J. Chem. Eur. J., 1998, 4(10): 2008.
[13]  Caseri W, Pregosin P S. Organometallics, 1988, 7(6): 1373.
[14]  Caseri W, Pregosin P S. J. Organomet. Chem., 1988, 356(2): 259.
[15]  Jagadeesh M N, Thiel W, K?hler J, Fehn A. Organometallics, 2002, 21(10): 2076.
[16]  Lewis L N. J. Am. Chem. Soc., 1990, 112(16): 5998.
[17]  Marciniec B, Maciejewski H, Duczmal W, Fiedorow R, Kityński. Appl. Organomet. Chem., 2003, 17: 127.
[18]  Gigler P, Drees M, Riener K, Bechlars B, Herrmann W A. J. Catal., 2012, 295: 1.
[19]  Glaser P B, Tilley T D. J. Am. Chem. Soc., 2003, 125(45): 13640.
[20]  B?hme U. J. Organomet. Chem., 2006, 691(21): 4400.
[21]  Beddie C, Hall M B. J. Phys. Chem. A, 2006, 110(4): 1416.
[22]  Wrighton M S, Schroeder M A. J. Am. Chem. Soc., 1974, 96(19): 6235.
[23]  Abdelqader W, Chmielewski D, Grevels F W, ?zkar S, Peynircioglu N B. Organometallics, 1996, 15(2): 604.
[24]  Wrighton M S, Schroeder M A. J. Am. Chem. Soc., 1974, 96(19): 6235.
[25]  Wrighton M, Hammond G S, Gray H B. J. Organomet. Chem., 1974, 70(2): 283.
[26]  Wang I H, Dobson G R. J. Organomet. Chem., 1988, 356(1): 77.
[27]  Wang I H, Dobson G R, Jones P R. Organometallics, 1990, 9(9): 2510.
[28]  Chung L W, Lee H G, Lin Z, Wu Y. J. Org. Chem., 2006, 71(16): 6000.
[29]  Corey J Y, Zhu X H. Organometallics, 1992, 11(2): 672.
[30]  Terao J, Torii K, Saito K, Kambe N, Baba A, Sonoda N. Angew. Chem. Int. Ed., 1998, 37(19): 2653.
[31]  Sakaki S, Takayama T, Sugimoto M. Chem. Lett., 2001, 30(12): 1222.
[32]  Sommer L H, Pietrusza E W, Whitmore F C. J. Am. Chem. Soc., 1947, 69(1): 188.
[33]  El-Abbady A M, Anderson L C. J. Am. Chem. Soc., 1958, 80(7): 1737.
[34]  Burkhard C A, Krieble R H. J. Am. Chem. Soc., 1947, 69(11): 2687.
[35]  Speier J L, Webster J A, Barnes G H. J. Am. Chem. Soc., 1957, 79(4): 974.
[36]  Johnson C R, Raheja R K. J. Org. Chem., 1994, 59(9): 2287.
[37]  黄锁义(Huang S Y), 田华(Tian H), 郝振文(Hao Z W), 王麟生(Wang L S). 化工技术与开发(Technology & Development of Chemical Industry), 2003, 32(6): 33.
[38]  Chalk A J, Harrod J F. J. Am. Chem. Soc., 1965, 87(1): 16.
[39]  Schuerman J A, Fronczek F R, Selbin J. J. Am. Chem. Soc., 1986, 108(2): 336.
[40]  Seitz F, Wrighton M S. Angew. Chem. Int. Ed. Engl., 1988, 27(2): 289.
[41]  Bergens S H, Noheda P, Whelan J, Bosnich B. J. Am. Chem. Soc., 1992, 114(6): 2128.
[42]  LaPointe A M, Rix F C, Brookhart M. J. Am. Chem. Soc., 1997, 119(5): 906.
[43]  Corey J Y, Braddock-Wilking J. Chem. Rev., 1999, 99(1): 175.
[44]  Brost R D, Bruce G C, Joslin F L, Stobart S R. Organometallics, 1997, 16(26): 5669.
[45]  Yamashita H, Tanaka M, Goto M. Organometallics, 1997, 16(21): 4696.
[46]  Roy A K, Taylor R B. J. Am. Chem. Soc., 2002, 124(32): 9510.
[47]  Tsipis C A, Kefalidis C E. J. Organomet. Chem., 2007, 692(23): 5245.
[48]  Lewis L N, Uriarte R J. Organometallics, 1990, 9(3): 621.
[49]  Lewis L N, Lewis N. J. Am. Chem. Soc., 1986, 108(23): 7228.
[50]  Beddie C, Hall M B. J. Am. Chem. Soc., 2004, 126(42): 13564.
[51]  Chung L W. PhD thesis of the Hong Kong University of Science ang Technology, 2006.
[52]  Tuttle T, Wang D, Thiel W, K?hler J, Hofmann M, Weis J. Organometallics, 2006, 25(19): 4504.
[53]  Tuttle T, Wang D, Thiel W, K?hler J, Hofmann M, Weis J. J. Organomet. Chem., 2007, 692(11): 2282.
[54]  Abdelqader W, ?zkar S, Peynircioglu N B Z. Naturforsch, 1993, 48B: 539.
[55]  Khalimon A Y, Simionescu R, Nikonov G I. J. Am. Chem. Soc., 2011, 133(18): 7033.
[56]  Schmidt T. Tetrahedron Lett., 1994, 35(21): 3513.
[57]  Mao Z, Gregg B T, Cutler A R. J. Am. Chem. Soc., 1995, 117(40): 10139.
[58]  Gregg B T, Cutler A R. J. Am. Chem. Soc., 1996, 118(42): 10069.
[59]  Liu L, Bi S, Sun M, Yuan X, Zheng N, Li P. J. Organomet. Chem., 2009, 694(20): 3343.
[60]  Kesti M R, Waymouth R M. Organometallics, 1992, 11(3): 1095.
[61]  Kesti M R, Abdulrahman M, Waymouth R M. J. Organomet. Chem., 1991, 417(1/2): C12.
[62]  Takahashi T, Hasegawa M, Suzuki N, Saburi M, Rousset C J, Fanwick P E, Negishi E. J. Am. Chem. Soc., 1991, 113(22): 8564.
[63]  Harrod J F, Yun S S. Organometallics, 1987, 6(7): 1381.
[64]  Wu Y D, Chung L W, Zhang X H. Computational Modeling for Homogeneous and Enzymatic Catalysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. 285.
[65]  Ura Y, Hara R, Takahashi T. Chem. Lett., 1998, 27(3): 195.
[66]  Sakaki S, Takayama T, Sumimoto M, Sugimoto M. J. Am. Chem. Soc., 2004, 126(10): 3332.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133