全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2014 

共无定形药物——新型单相无定形二元体系

DOI: 10.7536/PC130755, PP. 478-486

Keywords: 共无定形,单相二元体系,形成机理,玻璃化转变温度,稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

共无定形药物是活性药物成分与其他小分子固体物质(药物或辅料)结合形成的具有单一玻璃化转变温度的单相无定形二元体系。它作为一种新的药物固体形态,可能改善药物的溶解度、溶出速率、稳定性及生物利用度等理化性质,已成为药物研发的一种新途径。本文主要对共无定形药物的定义、形成机理、制备方法、分析鉴别方法、物理化学稳定性以及溶解度和溶出速率进行综述,并对共无定形与固体分散体和共晶的比较进行了概述。

References

[1]  Radtke M. New Drugs, 2001, 3: 62.
[2]  Hu J, Johnston K P, Williams R O. Int. J. Pharm., 2004, 271: 145.
[3]  马坤(Ma K), 高静(Gao J), 马磊(Ma L). 中国药科大学学报(Journal of China Pharmaceutical University), 2012, 43(5): 475.
[4]  高缘(Gao Y), 祖卉(Zu H), 张建军(Zhang J J). 化学进展(Progress in Chemistry), 2010, 22(5): 829.
[5]  Lu Q, Zografi G. Pharm. Res., 1998, 15: 1202.
[6]  L?bmann K, Laitinen R, Grohganz H, Gordon K C, Strachan C, Rades T. Mol. Pharm., 2011, 8: 1919.
[7]  Hoppu P, Jouppila K, Rantanen J, Schantz S, Juppo A M. J. Pharm. Pharmacol., 2007, 59: 373.
[8]  Schilling S U, Bruce C D, Shah N H, Malick A W, McGinity J W. Int. J. Pharm., 2008, 361: 158.
[9]  Masuda T, Yoshihashi Y, Yonemochi E, Fujii K, Uekusa H, Terada K. Int. J. Pharm., 2012, 422: 160.
[10]  Gao Y, Liao J, Qi X, Zhang J. Int. J. Pharm., 2013, 450: 290.
[11]  Alles M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. J. Control. Release, 2009, 136: 45.
[12]  L?bmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R. Eur. J. Pharm. Biopharm., 2012, 81: 159.
[13]  Vasconcelos T, Sarmento B, Costa P. Drug Discov. Today, 2007, 12: 1068.
[14]  Janssens S, Mooter G V. J. Pharm. Pharmacol., 2009, 61: 1571.
[15]  Qian F, Huang J, Hussain M A. J. Pharm. Sci., 2010, 99: 2941.
[16]  L?bmann K, Laitinen R, Grohganz H, Strachan C, Rades T, Gordon K C. Int. J. Pharm., 2013, 453: 80.
[17]  Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Eur. J. Pharm. Biopharm., 2000, 49: 259.
[18]  Dudognon E, Willart J F, Caron V, Capet F, Larsson T, Descamps M. Solid State Commun., 2006, 138: 68.
[19]  Chieng N, Aaltonen J, Saville D, Rades T. Eur. J. Pharm. Biopharm., 2009, 71: 47.
[20]  Forster A, Hempenstall J, Tucker, Rades T. Drug Dev. Ind. Pharm., 2001, 27: 549.
[21]  Schneider H A. Macromol. Chem. Phys., 1988, 189: 1941.
[22]  Nair R, Nyamweya N, G?nen S, Martínez-Miranda L J, Hoag S W. Int. J. Pharm., 2001, 225: 83.
[23]  Gupta P, Thilagavathi R, Chakraborti A K, Bansal A K. Mol. Pharm., 2005, 2: 384.
[24]  Shamblin S L, Huang E Y, Zografi G. J. Therm. Anal. Calorim., 1996, 47: 1567.
[25]  Taylor L S, Zografi G. J. Pharm. Sci., 1998, 87: 1615.
[26]  Lara-ochoa F, Espinosa-pérez G. Supramol. Chem., 2007, 19: 553.
[27]  Morissette S L, Almarsson O, Peterson M L, Remenar J F, Read M J, Lemmo A V, Ellis S, Cima M J, Gardner C R. Adv. Drug Deliver. Rev., 2004, 56: 275.
[28]  Descamps M, Willart J F, Dudognon E, Caron V. Journal of Pharmaceutical Science, 2007, 96: 1398.
[29]  Ahuja N, Katare O P, Singh B. Eur. J. Pharm. Biopharm., 2007, 65: 26.
[30]  L?bnmann K, Grohganz H, Laitinen R, Strachan C, Rades T. Eur. J. Pharm. Biopharm., 2013, 85: 873.
[31]  Leuner C, Dressman J. Eur. J. Pharm. Biopharm., 2000, 50: 47.
[32]  Serajuddin A T M. J. Pharm. Sci., 1999, 88: 1058.
[33]  Zheng W, Jain A, Papoutsakis D, Dannenfelser R M, Panicucci R, Garad S. Drug Dev. Ind. Pharm., 2012, 38: 235.
[34]  Yamamura S, Gotoh H, Sakamoto Y, Momose Y. Int. J. Pharm., 2002, 241: 213.
[35]  Duer M J. Solid-State NMR Spectroscopy Principles and Applications. Blackwell Science, 2002. 391.
[36]  Schantz S, Hoppu P, Juppo A M. J. Pharm. Sci., 2009, 98: 1862.
[37]  Yu L. Adv. Drug Deliver. Rev., 2001, 48: 27.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133