OALib Journal期刊
ISSN: 2333-9721
费用:99美元
水中金属纳米颗粒对细菌的光致毒性机理
DOI: 10.7536/PC130779 , PP. 436-449
Keywords: 金属纳米颗粒 ,光致毒性 ,影响因素 ,离子释放 ,氧化应激效应 ,尺寸效应
Abstract:
金属纳米颗粒由于具有特殊的理化性质,被广泛应用于化学、光学和生物学等领域,使其在应用的过程中不可避免地释放到水体中。近年来,金属纳米颗粒对生态系统和人类健康造成了潜在危害,引起了日益广泛的关注。本文对目前水环境中存在的纳米颗粒的种类、来源、理化性质及金属纳米颗粒对细菌光致毒性的影响因素(光源波长、粒径大小、天然有机质和介质组分)进行了详细介绍,并通过有毒金属离子释放、活性氧自由基(羟基自由基、超氧阴离子自由基和单线态氧)产生以及粒径变化等光化学现象,阐述了金属纳米颗粒物对细菌的光致毒性机理。最后总结了目前金属纳米颗粒在环境行为和光致毒性研究中面临的主要问题,并在此基础上提出将来金属纳米颗粒光致毒性的研究方向(如金属纳米颗粒的定量结构-活性关系,其他污染物与金属纳米颗粒的复合光致毒性效应等)。
References
[1] Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Nature, 2004, 22(11): 1360.
[2] Li Y, Zhang W, Niu J F, Chen Y S. ACS Nano, 2012, 6(6): 5164.
[3] Simon-Deckers A l, Loo S, Mayne-L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carrieère M. Environ. Sci. Technol., 2009, 43(21): 8423.
[4] Hotze E M, Labille J, Alvarez P, Wiesner M R. Environ. Sci. Technol., 2008, 42(11): 4175.
[5] 朱小山(Zhu X S), 朱琳(Zhu L), 田胜艳(Tian S Y), 郎宇鹏(Lang Y P), 李燕(Li Y). 生态学报(Acta Ecol. Sin.), 2008, 28(8): 3507.
[6] Aldana J, Wang Y A, Peng X. J. Am. Chem. Soc, 2001, 123(36): 8844.
[7] Colvin V L. Nat. Biotechnol., 2003, 21(10): 1166.
[8] Cunningham S, Brennan-Fournet M E, Ledwith D, Byrnes L, Joshi L. Environ. Sci. Technol., 2013, 47(8): 3883.
[9] Jiang G X, Shen Z Y, Niu J F, Bao Y P, Chen J, He T D. J. Environ. Monit., 2011, 13(1): 42.
[10] Choi O, Hu Z. Environ. Sci. Technol., 2008, 42(12): 4583.
[11] Ahamed M. Toxicol. Vitro, 2011, 25(4): 930.
[12] Jiang W, Mashayekhi H, Xing B. Environ. Pollut., 2009, 157(5): 1619.
[13] Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti M F, Fievet F. Nano Lett., 2006, 6(4): 866.
[14] Baek Y W, An Y J. Sci. Total Environ., 2011, 409(8): 1603.
[15] Ispas C, Andreescu D, Patel A, Goia D V, Andreescu S, Wallace K N. Environ. Sci. Technol., 2009, 43(16): 6349.
[16] Dasari T P, Pathakoti K, Hwang H M. J. Environ. Sci., 2013, 25(5): 882.
[17] Li M, Pokhrel S, Jin X, Maedler L, Damoiseaux R, Hoek E M V. Environ. Sci. Technol., 2011, 45(2): 755.
[18] Feris K, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, Kongara M, Sabetian M, Quinn B, Hanna C. Langmuir, 2009, 26(6): 4429.
[19] Wu B, Wang Y, Lee Y H, Horst A, Wang Z, Chen D R, Sureshkumar R, Tang Y J. Environ. Sci. Technol., 2010, 44(4): 1484.
[20] Heinlaan M, Ivask A, Blinova I, Dubourguier H C, Kahru A. Chemosphere, 2008, 71(7): 1308.
[21] Gunawan C, Teoh W Y, Marquis C P, Amal R. ACS Nano, 2011, 5(9): 7214.
[22] Fang T T, Li X, Wang Q S, Zhang Z J, Liu P, Zhang C C. Toxicol. Vitro, 2012, 26(7): 1233.
[23] Wang Q, Fang T, Liu P, Min X, Li X. J. Colloid Interface Sci., 2011, 363(2): 476.
[24] Kumar A, Pandey A K, Singh S S, Shanker R, Dhawan A. Free Radic. Biol. Med., 2011, 51(10): 1872.
[25] Kim S W, An Y J. Appl. Microbiol. Biotechnol., 2012, 95(1): 243.
[26] Tong T, Binh C T T, Kelly J J, Gaillard J F, Gray K A. Water Res., 2013, 47(7): 2352.
[27] Li M, Zhu L, Lin D. Environ. Sci. Technol., 2011, 45(5): 1977.
[28] Zhang W, Yao Y, Li K G, Huang Y, Chen Y S. Environ. Pollut., 2011, 159(12): 3757.
[29] Li Y, Zhang W, Niu J F, Chen Y S. Environ. Sci. Technol., 2013, 47(18): 10293.
[30] Kittler S, Greulich C, Diendorf J, Koeller M, Epple M. Chem. Mat., 2010, 22(16): 4548.
[31] Du J, Gebicki J M. Int. J. Biochem. Cell B, 2004, 36(1): 2334.
[32] Wang S, Gao R, Zhou F, Selke M. J. Mater. Chem., 2004, 14(4): 487.
[33] Lin W, Huang Y, Zhou X D, Ma Y. Int. J. Toxicol., 2006, 25(6): 451.
[34] Schubert D, Dargusch R, Raitano J, Chan S W. Biochem. Biophys. Res. Commun., 2006, 342(1): 86.
[35] Horie M, Nishio K, Kato H, Fujita K, Endoh S, Nakamura A, Miyauchi A, Kinugasa S, Yamamoto K, Niki E. J. Biochem., 2011, 150(4): 461.
[36] Eom H J, Choi J. Toxicol. Vitro, 2009, 23(7): 1326.
[37] Huang C C, Aronstam R S, Chen D R, Huang Y W. Toxicol. Vitro, 2010, 24(1): 45.
[38] Yamamoto O, Komatsu M, Sawai J, Nakagawa Z. J. Mmater Sci: Mater Med., 2004, 15(8): 847.
[39] Fahmy B, Cormier S A. Toxicol. Vitro, 2009, 23(7): 1365.
[40] Karlsson H L, Cronholm P, Gustafsson J, Mller L. Chem. Res. Toxicol., 2008, 21(9): 1726.
[41] Lin W, Huang Y, Zhou X D, Ma Y. Toxicol. Appl. Pharmacol., 2006, 217(3): 252.
[42] Kim Y J, Yu M, Park H O, Yang S I. Mol. Cell Toxicol., 2010, 6(4): 336.
[43] Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. Toxicol. Vitro, 2005, 19(7): 975.
[44] Kim S, Choi J E, Choi J, Chung K H, Park K, Yi J, Ryu D Y. Toxicol. Vitro, 2009, 23(6): 1076.
[45] Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W. Small, 2009, 5(18): 2067.
[46] Ipe B I, Lehnig M, Niemeyer C M. Small, 2005, 1(7): 706.
[47] Ma J, Chen J Y, Zhang Y, Wang P N, Guo J, Yang W L, Wang C C. J. Phys. Chem. B, 2007, 111(41): 12012.
[48] Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M. J. Chem. Eng. Jpn., 1996, 29(4): 627.
[49] 吴其圣(Wu Q S), 杨琛(Yang C), 胡秀敏(Hu X M), 党志(Dang Z), 李筱琴(Li X Q). 环境科学学报(J. Environ. Sci.), 2012, 32(7): 1596.
[50] 叶茵茵(Ye Y Y), 戚菁(Qi J), 王洪涛(Wang H T), 李风亭(Li F T). 水处理技术(Water Treat. Technol.), 2012, 38(12): 6.
[51] Kamat P V. J. Phys. Chem. B, 2002, 106(32): 7729.
[52] Osamu Y. Int. J. Inorg. Mater., 2001, 3(7): 643.
[53] Levard C, Hotze E M, Lowry G V, Brown G E, Jr. Environ. Sci. Technol., 2012, 46(13): 6900.
[54] 蒋国翔(Jiang G X), 沈珍瑶(Shen Z Y), 牛军峰(Niu J F), 庄玲萍(Zhuang L P), 何天德(He T D). 化学进展(Prog. Chem.), 2011, 23(8): 1769.
[55] Nel A, Xia T, Mdler L, Li N. Science, 2006, 311(5761): 622.
[56] 王震宇(Wang Z Y), 赵建(Zhao J), 李娜(Li N), 李锋民(Li F M). 环境科学学报(J. Environ. Sci.), 2010, 31(6): 1409.
[57] Li Y, Zhang W, Li K G, Yao Y, Niu J F, Chen Y S. Environ. Pollut., 2012, 164: 259.
[58] Zhang W, Li Y, Niu J, Chen Y. Langmuir, 2013, 29(15): 4647.
[59] Chithrani B D, Ghazani A A, Chan W C W. Nano Lett., 2006, 6(4): 662.
[60] AshaRani P V, Mun G L K, Hande M P, Valiyaveettil S. ACS Nano, 2009, 3(2): 279.
[61] Bhattacharjee S, de Haan L H J, Evers N M, Jiang X, Marcelis A, Zuilhof H, Rietjens I M C M, Alink G M. Part. Fibre. Toxicol., 2010, 7: 25.
[62] Misawa M, Takahashi J. Nanomed. Nanotechnol. Biol. Med., 2011, 7.
[63] 常雪灵(Chang X L), 祖燕(Zu Y), 赵宇亮(Zhao Y L). 科学通报(Chin. Sci. Bull.), 2011, 56(2): 108.
[64] Van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston B D, de-Bastos E, Booth T, Tyler C R, Santos E M. Environ. Sci. Technol., 2013, 47(14): 8005.
[65] Fujiwara H, Yanagida S, Kamat P V. J. Phys. Chem. B, 1999, 103(14): 2589.
[66] Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, Holecova M, Zboril R. J. Phys. Chem. C, 2008, 112(15): 5825.
[67] 吕继涛(Lv J T), 张淑贞(Zhang S Z). 化学进展(Prog. Chem.), 2013, 25(1): 156.
[68] Adams L K, Lyon D Y, Alvarez P J. Water Res., 2006, 40(19): 3527.
[69] Choi O, Hu Z. J. Environ. Eng., 2009, 135(12): 1365.
[70] Reddy K M, Feris K, Bell J, Wingett D G, Hanley C, Punnoose A. Appl. Phys. Lett., 2007, 90(21): 213902.
[71] Choi O, Yu C P, Fernandez G E, Hu Z. Water Res., 2010, 44(20): 6095.
[72] Ivask A, Bondarenko O, Jepihhina N, Kahru A. Anal. Bioanal. Chem., 2010, 398: 1.
[73] Wang Z, Lee Y H, Wu B, Horst A, Kang Y, Tang Y J, Chen D R. Chemosphere, 2010, 80(5): 525.
[74] Hu X, Cook S, Wang P, Hwang H M. Sci. Total Environ., 2009, 407(8): 3070.
[75] Brunet L, Lyon D Y, Hotze E M, Alvarez P J J, Wiesner M R. Environ. Sci. Technol., 2009, 43(12): 4355.
[76] Bondarenko O, Ivask A, Kaekinen A, Kahru A. Environ. Pollut., 2012, 169: 81.
[77] Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. Small, 2012, 8(21): 3326.
[78] Dimkpa C O, McLean J E, Britt D W, Johnson W P, Arey B, Lea A S, Anderson A J. Chem. Res. Toxicol., 2012, 25(5): 1066.
[79] Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Environ. Sci. Technol., 2006, 40(19): 6151.
[80] Li R, Jiang F, Xiao Q, Li J, Liu X, Yu Q, Liu Y, Zeng C. Nanotechnology, 2010, 21(47): 1.
[81] Liu J, Hurt R H. Environ. Sci. Technol., 2010, 44(6): 2169.
[82] Li M, Lin D, Zhu L. Environ. Pollut., 2013, 173: 97.
[83] Gorham J M, MacCuspie R I, Klein K L, Fairbrother D H, Holbrook R D. J. Nanopart. Res., 2012, 14(10): 1139.
[84] Yang X, Gondikas A P, Marinakos S M, Auffan M, Liu J, Hsu-Kim H, Meyer J N. Environ. Sci. Technol., 2012, 46(2): 1119.
[85] Derfus A M, Chan W C W, Bhatia S N. Nano Lett., 2004, 4(1): 11.
[86] Lin H F, Liao S C, Hung S W. J. Photochem. Photobiol. A-Chem., 2005, 174(1): 82.
[87] Irwin F. Arch. Biochem. Biophysics., 1986, 247(1): 1.
[88] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Lett., 2006, 6(8): 1794.
[89] Thomas C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Environ. Sci. Technol., 2006, 40(14): 4346.
[90] Long T C, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry G V, Veronesi B. Environ. Health Perspect., 2007, 115(11): 1631.
[91] Cho M, Chung H, Choi W, Yoon J. Water Res., 2004, 38(4): 1069.
[92] Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E. ACS Nano, 2008, 2(10): 2121.
[93] Limbach L K, Wick P, Manser P, Robert N, Bruinink A, Stark W J. Environ. Sci. Technol., 2007, 41(11): 4158.
[94] Park E J, Choi J, Park Y K, Park K. Toxicology, 2008, 245(1/2): 90.
[95] Dumas E M, Ozenne V, Mielke R E, Nadeau J L. IEEE Trans. NanoBiosci., 2009, 8(1): 58.
[96] Chibli H, Carlini L, Park S, Dimitrijevic N M, Nadeau J L. Nanoscale, 2011, 3(6): 2552.
[97] Green M, Howman E. Chem. Commun., 2005, (1): 121.
[98] Kamat P V, Flumiani M, Hartland G V. J. Phys. Chem. B, 1998, 102(17): 3123.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133