OALib Journal期刊
ISSN: 2333-9721
费用:99美元
金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用
DOI: 10.7536/PC150416 , PP. 1509-1522
Keywords: 印刷电子 ,金属纳米颗粒 ,导电墨水
Abstract:
发展下一代柔性、低价和环境友好的印刷电子技术已取得大量的研究进展。印刷电子是基于印刷原理的电子制备技术,主要是将一些液体分散性好的或可溶性材料进行印刷图案化从而实现电子元器件的制备。印刷电子学涉及大量的基础学科问题,包括材料、设备、工艺与应用多方面的共性技术,但其关键技术之一在于制备环保、低成本的新型导电墨水。结合印刷电子基础与应用研究的发展现状,本文主要对金属纳米颗粒的合成及其导电墨水的制备与相关应用的最新研究进展进行了综述和讨论,并对其在传感器、薄膜晶体管(TFT)、太阳能电池及RFID等方面的最新应用进展进行了概述。
References
[1] Jeong S, Woo K, Kim D, Lim S, Kim J S, Shin H, Xia Y, Moon J. Adv. Funct. Mater., 2008, 18 (5): 679.
[2] Woo Y J, Park K H, Park O O, Wang D H. Org. Electron., 2015, 16: 118.
[3] Magdassi S, Grouchko M, Kamyshny A. Mater., 2010, 3 (9): 4626.
[4] Effenberger F B, Sulca M A, Machini M T, Couto R A, Kiyohara P K, Machado G, Rossi L M. J. Nanopart. Res., 2014, 16 (11): 1.
[5] Farraj Y, Grouchko M, Magdassi S. Chem. Commun., 2015, 51, 1587.
[6] Glover R D, Miller J M, Hutchison J E. ACS Nano, 2011, 5 (11): 8950.
[7] Dang T M D, Le T T T, Fribourg-Blanc E, Dang M C. Adv. Nat. Sci., 2011, 2 (2): 025004.
[8] Malviya K D, Chattopadhyay K. J. Mater. Sci., 2015, 50 (2): 980.
[9] Ghosh Chaudhuri R, Paria S. Chem. Rev., 2011, 112 (4): 2373.
[10] Bao Y, Calderon H, Krishnan K M. J. Phys. Chem. C, 2007, 111 (5): 1941.
[11] Wang L, Clavero C, Huba Z, Carroll K J, Carpenter E E, Gu D, Lukaszew R A. Nano Lett., 2011, 11 (3): 1237.
[12] Zhao Y, Yang X, Tian J, Wang F, Zhan L. Int. J. Hydrogen Energy, 2010, 35 (8): 3249.
[13] Chen D, Li J, Shi C, Du X, Zhao N, Sheng J, Liu S. Chem. Mater., 2007, 19 (14): 3399.
[14] Kamyshny A, Ben-Moshe M, Aviezer S, Magdassi S. Macromol. Rapid Commun., 2005, 26 (4): 281.
[15] Park B K, Kim D, Jeong S, Moon J, Kim J S. Thin Solid Films, 2007, 515 (19): 7706.
[16] Muzikansky A, Nanikashvili P, Grinblat J, Zitoun D. J. Phys. Chem. C, 2013, 117 (6): 3093.
[17] Joo S J, Park S H, Moon C J, Kim H S. ACS Appl. Mater. Interfaces, 2015, 7 (10): 5674.
[18] Chen S P, Chiu H L, Wang P H, Liao Y C. ECS J. Solid State Sci. Technol., 2015, 4 (4): P3026.
[19] Chung W H, Hwang H J, Kim H S. Thin Solid Films, 2015, 580: 61.
[20] Zhang Z, Zhang X, Xin Z, Deng M, Wen Y, Song Y. Nanotechnology, 2011, 22 (42): 425601.
[21] Lewis J A, Ahn B Y. Nature, 2015, 518 (7537): 42.
[22] Kullmann C, Schirmer N C, Lee M T, Ko S H, Hotz N, Grigoropoulos C P, Poulikakos D. J. Micromechanics Microeng., 2012, 22 (5): 055022.
[23] Kamyshny A, Magdassi S. Small, 2014, 10 (17): 3515.
[24] Layani M, Cooperstein I, Magdassi S. J. Mater. Chem. C, 2013, 1 (19): 3244.
[25] Perelaer J, de Gans B J, Schubert U S. Adv. Mater., 2006, 18 (16): 2101.
[26] Jo Y H, Jung I, Choi C S, Kim I, Lee H M. Nanotechnology, 2011, 22 (22): 225701.
[27] Lee H, Yang M. Appl. Phys. A, 2015: 1.
[28] 吴美兰(Wu M L),周雪琴(Zhou X Q),李巍(Li W),莫黎昕(Mo L X),刘东志(Liu D Z). 化工进展(Chemical Industry and Engineering Progress), 2012, 31 (8): 1806.
[29] Kim H S, Dhage S R, Shim D E, Hahn H T. Appl. Phys. A, 2009, 97 (4): 791.
[30] Kim D, Jeong S, Park B K, Moon J. Appl. Phys. Lett., 2006, 89 (26): 264101.
[31] Lee H H, Chou K S, Huang K C. Nanotechnology, 2005, 16 (10): 2436.
[32] Toshima N, Yonezawa T. New J. Chem., 1998, 22 (11): 1179.
[33] Perelaer J, Smith P J, Mager D, Soltman D, Volkman S K, Subramanian V, Korvink J G, Schubert U S. J. Mater. Chem., 2010, 20 (39): 8446.
[34] Woo K, Bae C, Jeong Y, Kim D, Moon J. J. Mater. Chem., 2010, 20 (19): 3877.
[35] Joo M, Lee B, Jeong S, Lee M. Thin Solid Films, 2012, 520 (7): 2878.
[36] Moon Y J, Kang H, Kang K, Moon S J. J. Electron. Mater., 2015, 44 (4): 1192.
[37] Denneulin A, Blayo A, Neuman C, Bras J. J. Nanopart. Res., 2011, 13 (9): 3815.
[38] H?sel M, Krebs F C. J. Mater. Chem., 2012, 22 (31): 15683.
[39] Kim K S, Park B G, Jung K H, Kim J W, Jeong M Y, Jung S B. J. Nanosci. Nanotechnol., 2015, 15 (3): 2333.
[40] Perelaer J, Abbel R, Wünscher S, Jani R, van Lammeren T, Schubert U S. Adv. Mater., 2012, 24 (19): 2620.
[41] Perelaer J, Klokkenburg M, Hendriks C E, Schubert U S. Adv. Mater., 2009, 21 (47): 4830.
[42] Chaim R. Mater. Sci. Eng. A, 2007, 443 (1): 25.
[43] Reinhold I, Hendriks C E, Eckardt R, Kranenburg J M, Perelaer J, Baumann R R, Schubert U S. J. Mater. Chem., 2009, 19 (21): 3384.
[44] Wünscher S, Stumpf S, Teichler A, Pabst O, Perelaer J, Beckert E, Schubert U S. J. Mater. Chem., 2012, 22 (47): 24569.
[45] Hummelg?rd M, Zhang R, Nilsson H E, Olin H. PLoS One, 2011, 6 (2): e17209.
[46] Allen M, Alastalo A, Suhonen M, Mattila T, Leppaniemi J, Seppa H. IEEE T. Microwave Theory Tech., 2011, 59 (5): 1419.
[47] Allen M L, Aronniemi M, Mattila T, Alastalo A, Ojanper? K, Suhonen M, Sepp? H. Nanotechnology, 2008, 19 (17): 175201.
[48] Lee H, Kim D, Lee I, Moon Y J, Hwang J Y, Park K, Moon S J. Jap. J. Appl. Phys., 2014, 53 (5S3): 05HC07.
[49] Cooperstein I, Layani M, Magdassi S. J. Mater. Chem. C, 2015, 3: 2040.
[50] Tang Y, He W, Zhou G, Wang S, Yang X, Tao Z, Zhou J. Nanotechnology, 2012, 23 (35): 355304.
[51] Layani M, Grouchko M, Shemesh S, Magdassi S. J. Mater. Chem., 2012, 22 (29): 14349.
[52] Grouchko M, Kamyshny A, Mihailescu C F, Anghel D F, Magdassi S. ACS Nano, 2011, 5 (4): 3354.
[53] Layani M, Magdassi S. J. Mater. Chem., 2011, 21 (39): 15378.
[54] Yang S, Wang C F, Chen S. Angew. Chem., 2011, 123 (16): 3790.
[55] Lu Z, Layani M, Zhao X, Tan L P, Sun T, Fan S, Yan Q, Magdassi S, Hng H H. Small, 2014, 10 (17): 3551.
[56] Hübler A, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V. Adv. Energy Mater., 2011, 1 (6): 1018.
[57] Russo A, Ahn B Y, Adams J J, Duoss E B, Bernhard J T, Lewis J A. Adv. Mater., 2011, 23 (30): 3426.
[58] Niu C. MRS Bull., 2011, 36 (10): 766.
[59] Wu X, Liu L, Deng Z, Nian L, Zhang W, Hu D, Xie Z, Mo Y, Ma Y. Part. Part. Syst. Charact., 2015, DOI: 10.1002/ppsc.201400241.
[60] Song C H, Ok K H, Lee C J, Kim Y, Kwak M G, Han C J, Kim N, Ju B K, Kim J W. Org. Electron., 2015, 17: 208.
[61] Moonen P F, Yakimets I, Huskens J. Adv. Mater., 2012, 24 (41): 5526.
[62] Dasgupta S, Stoesser G, Schweikert N, Hahn R, Dehm S, Kruk R, Hahn H. Adv. Funct. Mater., 2012, 22 (23): 4909.
[63] Gamerith S, Klug A, Scheiber H, Scherf U, Moderegger E, List E J. Adv. Funct. Mater., 2007, 17 (16): 3111.
[64] Tang W, Feng L, Zhao J Q, Cui Q Y, Chen S J,Guo X J. J. Mater. Chem. C, 2014, 2 (11): 1995.
[65] Noguchi Y, Sekitani T, Yokota T, Someya T. Appl. Phys. Lett., 2008, 93 (4): 043303.
[66] Chen P, Fu Y, Aminirad R, Wang C, Zhang J, Wang K, Galatsis K, Zhou C. Nano Lett., 2011, 11 (12): 5301.
[67] Hoppe H, Sariciftci N S. J. Mater. Res., 2004, 19 (07): 1924.
[68] Hecht D S, Hu L, Irvin G. Adv. Mater., 2011, 23 (13): 1482.
[69] Galagan Y, Zimmermann B, Coenen E W, J?rgensen M, Tanenbaum D M, Krebs F C, Gorter H, Sabik S, Slooff L H, Veenstra S C. Adv. Energy Mater., 2012, 2 (1): 103.
[70] 李祥高(Li X G), 吴宪(Wu X), 王世荣(Wang S R). 中国材料进展(Materials China), 2014, 33 (3): 156.
[71] 裴为华(Pei W H), 国冬梅(Guo D M), 耿照新(Geng Z X),陈弘达(Chen H D). 中国材料进展(Materials China), 2014, 33 (3): 172.
[72] Singh M, Haverinen H M, Dhagat P, Jabbour G E. Adv. Mater., 2010, 22 (6): 673.
[73] Saha K, Agasti S S, Kim C, Li X, Rotello V M. Chem. Rev., 2012, 112 (5): 2739.
[74] Hu C, Bai X, Wang Y, Jin W, Zhang X, Hu S. Anal. Chem., 2012, 84 (8): 3745.
[75] Wei W Y, White I M. Analyst, 2013, 138 (4): 1020.
[76] Subramanian V, Fréchet J M, Chang P C, Huang D C, Lee J B, Molesa S E, Murphy A R, Redinger D R, Volkman S K. Proc. IEEE, 2005, 93 (7): 1330.
[77] Sanchez-Romaguera V, Wünscher S, Turki B M, Abbel R, Barbosa S, Tate D J, Oyeka D, Batchelor J C, Parker E A, Schubert U S. J. Mater. Chem. C, 2015, 3 (9): 2141.
[78] Wolf F M, Perelaer J, Stumpf S, Bollen D, Kriebel F, Schubert U S. J. Mater. Res., 2013, 28 (9): 1254.
[79] Kim M G, Kanatzidis M G, Facchetti A, Marks T J. Nat. Mater., 2011, 10 (5): 382.
[80] Kim S H, Hong K, Xie W, Lee K H, Zhang S, Lodge T P, Frisbie C D. Adv. Mater., 2013, 25 (13): 1822.
[81] Wu W, Yang S, Zhang S, Zhang H, Jiang C. J. Colloid Interface Sci., 2014, 427: 15.
[82] Varela F, Armendáriz E, Wolluschek C. Chem. Eng. Process., 2011, 50 (5/6): 589.
[83] Kamyshny A, Steinke J, Magdassi S. Open Appl. Phys. J., 2011, 4: 19.
[84] Duan S K, Niu Q L, Wei J F, He J B, Yin Y A, Zhang Y. Phys. Chem. Chem. Phys., 2015, 17 (12): 8106.
[85] Sanchez-Romaguera V, Wünscher S, Turki B M, Abbel R, Barbosa S, Tate D J, Oyeka D, Batchelor J C, Parker E A, Schubert U S. J. Mater. Chem. C, 2015, 3: 2132.
[86] Nelson S F, Ellinger C R, Levy D H. ACS Appl. Mater. Interfaces, 2015,7 (4): 2754.
[87] Guo F, Li N, Radmilovi Dc' V V, Radmilovi Dc' V R, Turbiez M, Spiecker E, Forberich K, Brabec C J. Energy Environ. Sci., 2015, DOI: 10.1039/C5EE00184F.
[88] Arduini F, Zanardi C, Cinti S, Terzi F, Moscone D, Palleschi G, Seeber R. Sens. Actuators, B, 2015, 212: 536.
[89] Sirringhaus H, Kawase T, Friend R, Shimoda T, Inbasekaran M, Wu W, Woo E. Science, 2000, 290 (5499): 2123.
[90] Jahn S F, Blaudeck T, Baumann R R, Jakob A, Ecorchard P, Rüffer T, Lang H, Schmidt P. Chem. Mater., 2010, 22 (10): 3067.
[91] Liu L, Wan X, Sun L, Yang S, Dai Z, Tian Q, Lei M, Xiao X, Jiang C, Wu W. RSC Adv., 2015, 5 (13): 9783.
[92] Moisala A, Nasibulin A G, Kauppinen E I. J. Phys. C, 2003, 15 (42): S3011.
[93] Lee Y, Choi J R, Lee K J, Stott N E, Kim D. Nanotechnology, 2008, 19 (41): 415604.
[94] Kosmala A, Wright R, Zhang Q, Kirby P. Mater. Chem. Phys., 2011, 129 (3): 1075.
[95] Kamyshny A, Magdassi S. Small, 2014, 10 (17): 3515.
[96] Jung I, Jo Y H, Kim I, Lee H M. J. Electron. Mater., 2015, 41 (1): 155.
[97] Jeong S, Lee S H, Jo Y, Lee S S, Seo Y H, Ahn B W, Kim G, Jang G E, Park J U, Ryu B H. J. Mater. Chem. C, 2013, 1 (15): 2704.
[98] Trinh D C, Dang T M D, Huynh K K, Fribourg-Blanc E, Dang M C. Adv. Nat. Sci., 2015, 6 (2): 025018.
[99] Jing J J, Xie J, Chen G Y, Li W H, Zhang M M. J. Exp. Nanosci., 2015, DOI:10.1080/17458080.2015.1012751.
[100] 辛智青(Xin Z Q), 王思(Wang S), 李风煜(Li F Y), 张兴业(Zhang X Y), 张志良(Zhang Z L), 宋延林(Song Y L). 中国科学: 化学(Science China: Chemistry), 2013, 6: 677.
[101] Lu A H, Salabas E e L, Schüth F. Angew. Chem. Int. Ed., 2007, 46 (8): 1222.
[102] Semaltianos N, Hendry E, Chang H, Wears M. Laser Phys. Lett., 2015, 12 (4): 046201.
[103] Kim C K, Lee G J, Lee M K, Rhee C K. Powder Technol., 2014, 263: 1.
[104] Li N, Zhao P, Astruc D. Angew. Chem. Int. Ed., 2014, 53 (7): 1756.
[105] Yusof N S M, Ashokkumar M. Chem. Phys. Chem., 2015, 16 (4): 775.
[106] Tamburri E, Angjellari M, Tomellini M, Gay S, Reina G, Lavecchia T, Barbini P, Pasquali M, Orlanducci S. Electrochim. Acta., 2015, 157: 115.
[107] Yun J, Cho K, Park B, Kang H C, Ju B K, Kim S. Jap. J. Appl. Phys., 2008, 47 (6S): 5070.
[108] Jensen G C, Krause C E, Sotzing G A, Rusling J F. Phys. Chem. Chem. Phys., 2011, 13 (11): 4888.
[109] Huang Q, Shen W, Xu Q, Tan R, Song W. Mater. Chem. Phys., 2014, 147 (3): 550.
[110] Ko S H, Chung J, Hotz N, Nam K H, Grigoropoulos C P. J. Micromechanic. Microeng., 2010, 20 (12): 125010.
[111] Grouchko M, Kamyshny A, Magdassi S. J. Mater. Chem., 2009, 19 (19): 3057.
[112] Li D, Sutton D, Burgess A, Graham D, Calvert P D. J. Mater. Chem., 2009, 19 (22): 3719.
[113] Yu H, Li L, Zhang Y. Scripta Mater., 2012, 66 (11): 931.
[114] Park S, Vosguerichian M, Bao Z. Nanoscale, 2013, 5 (5): 1727.
[115] Vaseem M, Lee K M, Hong A R, Hahn Y B. ACS Appl. Mater. Interfaces, 2012, 4 (6): 3300.
[116] Shen W, Zhang X, Huang Q, Xu Q, Song W. Nanoscale, 2014, 6 (3): 1622.
[117] Jeong S, Song H C, Lee W W, Lee S S, Choi Y, Son W, Kim E D, Paik C H, Oh S H, Ryu B H. Langmuir, 2011, 27 (6): 3144.
[118] Ahn B Y, Walker S B, Slimmer S C, Russo A, Gupta A, Kranz S, Duoss E B, Malkowski T F, Lewis J A. J. Visua. Exp., 2011, (58): 3189.
[119] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M, Poulikakos D. Nanotechnology, 2007, 18 (34): 345202.
[120] Choi J H, Ryu K, Park K, Moon S J. Int. J. Heat Mass Transfer, 2015, 85: 904.
[121] Tobj?rk D, Aarnio H, Pulkkinen P, Bollstr?m R, M??tt?nen A, Ihalainen P, M?kel? T, Peltonen J, Toivakka M, Tenhu H, ?sterbacka R. Thin Solid Films, 2012, 520 (7): 2949.
[122] Galagan Y, Coenen E W C, Abbel R, van Lammeren T J, Sabik S, Barink M, Meinders E R, Andriessen R, Blom P W M. Org. Electron., 2013, 14 (1): 38.
[123] Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M, Poulikakos D. Appl. Phys. Lett., 2007, 90 (14): 141103.
[124] Hong S, Yeo J, Kim G, Kim D, Lee H, Kwon J, Lee H, Lee P, Ko S H. ACS Nano, 2013, 7 (6): 5024.
[125] Perelaer J, Schubert U S. J. Mater. Res., 2013, 28 (04): 564.
[126] Perelaer J, Jani R, Grouchko M, Kamyshny A, Magdassi S, Schubert U S. Adv. Mater., 2012, 24 (29): 3993.
[127] Tang Y, He W, Wang S, Tao Z, Cheng L. Crystengcomm., 2014, 16 (21): 4431.
[128] Magdassi S, Grouchko M, Berezin O, Kamyshny A. ACS Nano, 2010, 4 (4): 1943.
[129] Hecht D S, Kaner R B. MRS Bull., 2011, 36 (10): 749.
[130] Kang M G, Guo L J. Adv. Mater., 2007, 19 (10): 1391.
[131] Hu L, Wu H, Cui Y. MRS Bull., 2011, 36 (10): 760.
[132] Saran N, Parikh K, Suh D S, Mu?oz E, Kolla H, Manohar S K. J. Am. Chem. Soc., 2004, 126 (14): 4462.
[133] Hwang B, Shin H A, Kim T, Joo Y C, Han S M. Small, 2014,10 (16): 3397.
[134] Repetto D, Giordano M C, Martella C, de Mongeot F B. Appl. Surf. Sci., 2015, 327: 444.
[135] Layani M, Gruchko M, Milo O, Balberg I, Azulay D, Magdassi S. ACS Nano, 2009, 3 (11): 3537.
[136] Park J H, Lee D Y, Seung W, Sun Q, Kim S W, Cho J H. J. Phys. Chem. C, 2015, 119 (14): 7802.
[137] Azoubel S, Shemesh S, Magdassi S. Nanotechnology, 2012, 23 (34): 344003.
[138] Zhang C, Marvinney C E, Xu H Y, Liu W Z, Wang C L, Zhang L X, Wang J N, Ma J G, Liu Y C. Nanoscale, 2015, 7 (3): 1073.
[139] Polavarapu L, Manga K K, Yu K, Ang P K, Cao H D, Balapanuru J, Loh K P, Xu Q H. Nanoscale, 2011, 3 (5): 2268.
[140] Hoppmann E P, Wei W Y, White I M. Methods, 2013, 63 (3): 219.
[141] Dai Z, Xiao X, Wu W, Liao L, Mei F, Yu X, Guo S, Ying J, Ren F, Jiang C. Appl. Phys. Lett., 2014, 105 (21): 211902.
[142] Wu W, Liu L, Dai Z G, Liu J H, Yang S L, Zhou L, Xiao X H, Jiang C Z, Roy V A L. Sci. Rep., 2015, DOI: 10.1038/srep10208.
[143] Dang M C, Nguyen D S, Dang T M D, Tedjini S, Fribourg-Blanc E. Adv. Nat. Sci., 2014, 5 (2): 025012.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133