全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

两步热化学分解水制氢用氧交换材料

DOI: 10.7536/PC150436, PP. 1481-1499

Keywords: 热化学分解水,制氢,氧交换材料,金属氧化物,钙钛矿,透氧膜

Full-Text   Cite this paper   Add to My Lib

Abstract:

氧交换材料是一种能够在惰性或还原气氛中快速释氧,而在弱氧化气氛下(如水蒸气)恢复氧的储氧材料。基于氧交换材料的太阳能热化学分解水制氢技术可实现太阳能向氢能的高效转化。该技术利用太阳能提供热量使氧交换材料高温释氧或被还原性气体还原,而后与水发生氧化反应生成纯氢。将氧交换材料制成透氧膜,在膜的两侧发生材料的释氧和氧恢复,同时实现纯氢的连续制备。本文详细论述了铁基氧化物、钙钛矿氧化物、镍基氧化物、铈基氧化物、无机透氧膜等氧交换材料的研究成果,重点介绍了基于不同反应体系氧交换材料的应用情况,并就提高铁基氧化物、钙钛矿氧化物等典型氧交换材料反应活性与循环稳定性的可能路径,构建高效透氧膜反应器的难点与发展方向等主要问题进行了探讨与展望。

References

[1]  Xiao R, Zhang S, Peng S, Shen D, Liu K. Int. J. Hydrogen Energy, 2014, 39 (35): 19955.
[2]  Roeb M, Sattler C. Science, 2013, 341 (6145): 470.
[3]  Muhich C L, Evanko B W, Weston K C, Lichty P, Liang X, Martinek J, Musgrave C B, Weimer A W. Science, 2013, 341 (6145): 540.
[4]  Hajjaji N, Baccar I, Pons M N. Renew. Energ., 2014, 71: 368.
[5]  Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Ricco Galluzzo G. Int. J. Hydrogen Energy, 2014, 39 (16): 8482.
[6]  吴川(Wu C), 张华民(Zhang H M), 衣宝廉(Yi B L). 化学进展(Progress in Chemistry), 2005, 17 (3): 423.
[7]  Holladay J D, Hu J, King D L, Wang Y. Catal. Today, 2009, 139 (4): 244.
[8]  Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G. Catal. Today, 2007, 120 (3/4): 246.
[9]  Fuel Cells Bulletin, 2009, 5: 7.
[10]  Fuel Cells Bulletin, 2007, 6: 2.
[11]  Haraldsson K, Folkesson A, Alvfors P. J. Power Sources, 2005, 145 (2): 620.
[12]  Saxe M, Folkesson A, Alvfors P. Int. J. Hydrogen Energy, 2007, 32 (17): 4295.
[13]  Sun K, Pan X, Li Z, Ma J. Int. J. Hydrogen Energy, 2014, 39 (35): 20411.
[14]  Demirci U B, Miele P. J. Clean. Prod., 2013, 52: 1.
[15]  张平(Zhang P). 化学进展(Progress in Chemistry), 2005, 17 (4): 643.
[16]  Gupta S, Mahapatra M K, Singh P. Mater. Sci. Eng. R, 2015, 90: 1.
[17]  Kodama T, Gokon N. Chem. Rev., 2007, 107 (10): 4048.
[18]  Agrafiotis C, von Storch H, Roeb M, Sattler C. Renew. Sust. Energ. Rev., 2014, 29: 656.
[19]  LeValley T L, Richard A R, Fan M. Int. J. Hydrogen Energy, 2014, 39 (30): 16983.
[20]  Takenaka S, Yamada C, Kaburagi T, Otsuka K. Storage and Supply of Hydrogen Mediated by Iron Oxide: Modification of Iron Oxides. Amsterdam: Elsevier, 2000. 795.
[21]  Steinfeld A. Sol. Energy, 2005, 78 (5): 603.
[22]  代小平(Dai X P), 余长春(Yu C C). 化学进展(Progress in Chemistry), 2009, (Z2): 1626.
[23]  祝星(Zhu X), 王华(Wang H), 魏永刚(Wei Y G), 李孔斋(Li K Z), 晏冬霞. 化学进展(Progress in Chemistry), 2010, 22 (5): 1010.
[24]  Steinfeld A, Palumbo R. Solar Thermochemical Process Technology (Eds. Meyers R A). New York: Academic Press, 2003. 237.
[25]  Hirsch D, Steinfeld A. Chem. Eng. Sci., 2004, 59 (24): 5771.
[26]  Wegner K, Ly H C, Weiss R J, Pratsinis S E, Steinfeld A. Int. J. Hydrogen Energy, 2006, 31 (1): 55.
[27]  张磊(Zhang L), 张平(Zhang P), 王建晨(Wang J C). 太阳能学报(Acta Energiae Solaris Sinica ), 2006, 27 (12): 1263.
[28]  张文强(Zhang W Q), 于波(Yu B), 张平(Zhang P), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2006, 18 (6): 832.
[29]  Gokon N, Kondo K, Hatamachi T, Sato M, Kodama T. Int. J. Hydrogen Energy, 2013, 38 (12): 4935.
[30]  Kaneko H, Hosokawa Y, Kojima N, Gokon N, Hasegawa N, Kitamura M, Tamaura Y. Energy, 2001, 26 (10): 919.
[31]  Kaneko H, Hosokawa Y, Gokon N, Kojima N, Hasegawa N, Kitamura M, Tamaura Y. J. Phys. Chem. Solids, 2001, 62 (7): 1341.
[32]  Alvani C, Ennas G, La Barbera A, Marongiu G, Padella F, Varsano F. Int. J. Hydrogen Energy, 2005, 30 (13/14): 1407.
[33]  Seralessandri L, Bellusci M, Padella F, Santini A, Varsano F. Int. J. Hydrogen Energy, 2009, 34 (10): 4546.
[34]  Koepf E, Advani S G, Steinfeld A, Prasad A K, Int. J. Hydrogen Energy, 2012, 37 (22): 16871.
[35]  Steinfeld A. Int. J. Hydrogen Energy, 2002, 27 (6): 611.
[36]  Perkins C, Lichty P R, Weimer A W. Int. J. Hydrogen Energy, 2008, 33 (2): 499.
[37]  Loutzenhiser P G, Meier A, Steinfeld A. Materials, 2010, 3 (11): 4922.
[38]  Abanades S, Charvin P, Lemont F, Flamant G. Int. J. Hydrogen Energy, 2008, 33 (21): 6021.
[39]  Nakamura T. Sol. Energy, 1977, 19 (5): 467.
[40]  Coker E N, Ambrosini A, Rodriguez M A, Miller J E. J. Mater. Chem., 2011, 21 (29): 10767.
[41]  Charvin P, Abanades S, Flamant G, Lemort F. Energy, 2007, 32 (7): 1124.
[42]  Kodama T, Nakamuro Y, Mizuno T. J. Sol. Energy Engineering, 2004, 128 (1): 3.
[43]  Gokon N, Murayama H, Umeda J, Hatamachi T, Kodama T. Int. J. Hydrogen Energy, 2009, 34 (3): 1208.
[44]  Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N. Sol. Energy, 2005, 78 (5): 623.
[45]  Scheffe J R, McDaniel A H, Allendorf M D, Weimer A W. Energ. Environ. Sci., 2013, 6 (3): 963.
[46]  Scheffe J R, Li J, Weimer A W. Int. J. Hydrogen Energy, 2010, 35 (8): 3333.
[47]  Arifin D, Aston V J, Liang X, McDaniel A H, Weimer A W. Energ. Environ. Sci., 2012, 5 (11): 9438.
[48]  Chueh W C, Haile S M. Philos. Trans. A Math. Phys. Eng. Sci., 2010, 368 (1923): 3269.
[49]  Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. New Orleans, LA: Am. Chem. Soc., 2013. 245.
[50]  Hao Y, Yang C K, Haile S M. Phys. Chem. Chem. Phys., 2013, 15 (40): 17084.
[51]  Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A. J. Mater. Sci., 2010, 45 (15): 4163.
[52]  Le Gal A, Abanades S, Bion N, Le Mercier T, Harlé V. Energ. Fuel., 2013, 27 (10): 6068.
[53]  Meng Q L, Lee C, Ishihara T, Kaneko H, Tamaura Y. Int. J. Hydrogen Energy, 2011, 36 (21): 13435.
[54]  McDaniel A H, Miller E C, Arifin D, Ambrosini A, Coker E N, O'Hayre R, Chueh W C, Tong J. Energ. Environ. Sci., 2013, 6 (8): 2424.
[55]  Scheffe J R, Weibel D, Steinfeld A. Energ. Fuel., 2013, 27 (8): 4250.
[56]  El Naggar A M A, Gobara H M, Nassar I M. Renew. Sust. Energ. Rev., 2015, 41: 1205.
[57]  Demont A, Abanades S, Beche E. J. Phys. Chem. C, 2014, 118 (24): 12682.
[58]  McDaniel A H, Ambrosini A, Coker E N, Miller J E, Chueh W C, O'Hayre R, Tong J. Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production. Amsterdam: Elsevier, 2014. 2009.
[59]  Miller J E, Ambrosini A, Coker E N, Allendorf M D, McDaniel A H. Advancing Oxide Materials for Thermochemical Production of Solar Fuels. Amsterdam: Elsevier, 2014.2019.
[60]  Wei B, Fakhrai R, Saadatfar B. Int. J. Hydrogen Energy, 2014, 39 (23): 12353.
[61]  李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20 (9): 1306.
[62]  Li K, Wang H, Wei Y, Liu M. J. Rare Earth., 2008, 26 (5): 705.
[63]  李然家(Li R J), 余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese J. Catal.), 2002, 23 (4): 381.
[64]  孙小燕(Sun X Y), 向文国(Xiang W G), 田文栋(Tian W D), 徐祥(Xu X) 徐燕骥(Xu Y J), 肖云汉(Xiao Y H). 燃烧科学与技术(Journal of Combustion Science and Technology), 2011, 17 (6): 534.
[65]  Steinfeld A, Spiewak I. Energ. Convers. Manage., 1998, 39 (15): 1513.
[66]  Werder M, Steinfeld A. Energy, 2000, 25 (5): 395.
[67]  Otsuka K, Wang Y, Sunada E, Yamanaka I. J. Catal., 1998, 175 (2): 152.
[68]  Otsuka K, Wang Y, Nakamura M. Appl. Catal. A. Gen., 1999, 183 (2): 317.
[69]  Cha K S, Kim H S, Yoo B K, Lee Y S, Kang K S, Park C S, Kim Y H. Int. J. Hydrogen Energy, 2009, 34 (4): 1801.
[70]  Solunke R D, Veser G t. Ind. Eng. Chem. Res., 2010, 49 (21): 11037.
[71]  Dueso C, Ortiz M, Abad A, García Labiano F, de Diego L F, Gayán P, Adánez J. Chem. Eng. J., 2012, 188: 142.
[72]  Zhang X, Jin H. Appl. Energ., 2013, 112: 800.
[73]  Zhang X, Li S, Hong H, Jin H. Energ. Convers. Manage., 2014, 85: 701.
[74]  Benrabaa R, Boukhlouf H, L?fberg A, Rubbens A, Vannier R N, Bordes Richard E, Barama A. J. Nat.Gas Chem., 2012, 21 (5): 595.
[75]  Benrabaa R, L?fberg A, Rubbens A, Bordes Richard E, Vannier R N, Barama A. Catal. Today, 2013, 203: 188.
[76]  Xiang W, Wang S, Di T. Energ, Fuel., 2008, 22 (2): 961.
[77]  Chen S, Shi Q, Xue Z, Sun X, Xiang W. Int. J. Hydrogen Energy, 2011, 36 (15): 8915.
[78]  Dufour J, Serrano D P, Gálvez J L, González A, Soria E, Fierro J L G. Int. J. Hydrogen Energy, 2012, 37 (2): 1173.
[79]  Susmozas A, Iribarren D, Dufour J. Int. J. Hydrogen Energy, 2013, 38 (24): 9961.
[80]  Malonzo C D, De Smith R M, Rudisill S G, Petkovich N D, Davidson J H, Stein A. J. Phys. Chem. C, 2014, 118 (45): 26172.
[81]  Zheng Y, Wei Y, Li K, Zhu X, Wang H, Wang Y. Int. J. Hydrogen Energy, 2014, 39 (25): 13361.
[82]  Zheng Y, Zhu X, Wang H, Li K, Wang Y, Wei Y. J. Rare Earth., 2014, 32 (9): 842.
[83]  Zhu X, Wang H, Wei Y, Li K, Cheng X. J. Rare Earth., 2010, 28 (6): 907.
[84]  Zhu X, Wei Y, Wang H, Li K. Int. J. Hydrogen Energy, 2013, 38 (11): 4492.
[85]  Zhu X, Du Y, Wang H, Wei Y, Li K, Sun L. J. Rare Earth., 2014, 32 (9): 824.
[86]  Zhu X, Li K, Wei Y, Wang H, Sun L. Energ. Fuel., 2014, 28 (2): 754.
[87]  Galvita V V, Poelman H, Bliznuk V, Detavernier C, Marin G B. Ind. Eng. Chem. Res., 2013, 52 (25): 8416.
[88]  Yamaguchi D, Tang L, Wong L, Burke N, Trimm D, Nguyen K, Chiang K. Int. J. Hydrogen Energy, 2011, 36 (11): 6646.
[89]  李孔斋(Li K Z),王华(Wang H),魏永刚(Wei Y G),刘明春(Liu M C).燃料化学学报(Journal of Fuel Chemistry and Technology ), 2008, 36 (1): 83.
[90]  Wei Y, Wang H, Li K, Zhu X, Du Y. J. Rare Earth., 2010, 28, Supplement 1: 357.
[91]  Li K, Wang H, Wei Y, Yan D. Appl. Catal. B. Environ., 2010, 97 (3/4): 361.
[92]  Li K, Wang H, Wei Y, Yan D. Chem. Eng. J., 2011, 173 (2): 574.
[93]  Cheng X, Wang H, Wei Y, Li K, Zhu X. J. Rare Earth., 2010, 28, S1: 316.
[94]  Evdou A, Zaspalis V, Nalbandian L. Int. J. Hydrogen Energy, 2008, 33 (20): 5554.
[95]  Nalbandian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2009, 34 (17): 7162.
[96]  Nalbandian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2011, 36 (11): 6657.
[97]  李然家(Li R J),余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese J. Catal.), 2002, 23 (6): 549.
[98]  代小平(Dai X P), 余长春(Yu C C), 吴琼(Wu Q). 催化学报(Chinese J. Catal.), 2008, 29 (10): 954.
[99]  Dai X, Yu C, Li R, Wu Q, Hao Z. J. Rare Earth., 2008, 26 (1): 76.
[100]  Dai X, Yu C, Wu Q. Chinese J. Catal., 2008, 29 (10): 954.
[101]  Dai X, Yu C, Li R, Wu Q, Shi K, Hao Z. J. Rare Earth., 2008, 26 (3): 341.
[102]  Dai X, Yu C, Wu Q. J. Nat. Gas Chem., 2008, 17 (4): 415.
[103]  代小平(Dai X P), 余长春(Yu C C). 催化学报(Chinese J. Catal.), 2011, 32 (8): 1411.
[104]  He F, Li X, Zhao K, Huang Z, Wei G, Li H. Fuel, 2013, 108: 465.
[105]  Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z. Chinese J. Catal., 2014, 35 (7): 1196.
[106]  He F, Zhao K, Huang Z, Li X, Wei G, Li H. Chinese J. Catal., 2013, 34 (6): 1242.
[107]  Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z. Int. J. Hydrogen Energy, 2014, 39 (7): 3243.
[108]  Galvita V, Sundmacher K. Chem. Eng. J., 2007, 134 (1/3): 168.
[109]  Galvita V, Schr?der T, Munder B, Sundmacher K. Int. J. Hydrogen Energy, 2008, 33 (4): 1354.
[110]  Heidebrecht P, Sundmacher K. Chem. Eng. Sci., 2009, 64 (23): 5057.
[111]  Bohn C D, Cleeton J P, Müller C R, Chuang S Y, Scott S A, Dennis J S. Energ. Fuel., 2010, 24 (7): 4025.
[112]  Cormos C C. Int. J. Hydrogen Energy, 2010, 35 (6): 2278.
[113]  Scheffe J R, Allendorf M D, Coker E N, Jacobs B W, McDaniel A H, Weimer A W. Chem. Mater., 2011, 23 (8): 2030.
[114]  Xiang W, Chen S, Xue Z, Sun X. Int. J. Hydrogen Energy, 2010, 35 (16): 8580.
[115]  Aston V J, Evanko B W, Weimer A W. Int. J. Hydrogen Energy, 2013, 38 (22): 9085.
[116]  Otsuka K, Yamada C, Kaburagi T, Takenaka S. Int. J. Hydrogen Energy, 2003, 28 (3): 335.
[117]  Otsuka K, Kaburagi T, Yamada C, Takenaka S. J. Power Sources, 2003, 122 (2): 111.
[118]  Hui W, Takenaka S, Otsuka K. Int. J. Hydrogen Energy, 2006, 31 (12): 1732.
[119]  Lee D, Cha K, Lee Y, Kang K, Park C, Kim Y. Int. J. Hydrogen Energy, 2009, 34 (3): 1417.
[120]  Kim H S, Cha K S, Yoo B K, Ryu T G, Lee Y S, Park C S, Kim Y H. J. Ind. Eng. Chem., 2010, 16 (1): 81.
[121]  Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K. Int. J. Hydrogen Energy, 2014, 39 (25): 13381.
[122]  Liu X, Wang H. J. Solid State Chem., 2010, 183 (5): 1075.
[123]  Wen F, Wang H, Tang Z. Thermochim. Acta, 2011, 520 (1/2): 55.
[124]  Balachandran U, Lee T H, Wang S, Dorris S E. Int. J. Hydrogen Energy, 2004, 29 (3): 291.
[125]  Lee T H, Park C Y, Dorris S E, Balachandran U. ECS Transactions, 2008, 13: 379.
[126]  程云飞(Cheng Y F), 赵海雷(Zhao H L), 王治峰(Wang Z F), 滕德强(Teng D Q). 稀有金属材料与工程(Rare Metal Materials and Engineering ), 2008, 37: 2069.
[127]  Waller D, Lane J A, Kilner J A, Steele B C H. Solid State Ionics, 1996, 86/88, Part 2: 767.
[128]  Shao Z, Haile S M. Nature, 2004, 431 (7005): 170.
[129]  Li W, Zhu X, Cao Z, Wang W, Yang W. Int. J. Hydrogen Energy, 2015, 40 (8): 3452.
[130]  Park C Y, Lee T H, Dorris S E, Balachandran U. Int. J. Hydrogen Energy, 2010, 35 (9): 4103.
[131]  Park C Y, Lee T H, Dorris S E, Lu Y, Balachandran U. Int. J. Hydrogen Energy, 2011, 36 (15): 9345.
[132]  Park C Y, Lee T H, Dorris S E, Balachandran U. Int. J. Hydrogen Energy, 2013, 38 (15): 6450.
[133]  Jeon S Y, Im H N, Singh B, Hwang J H, Song S J. Ceram. Int., 2013, 39 (4): 3893.
[134]  Park C Y, Lee T H, Dorris S E, Balachandran U. ECS Transactions, 2008, 13: 393.
[135]  Wang H, Gopalan S, Pal U B. Electrochim. Acta, 2011, 56 (20): 6989.
[136]  Kilgus M, Wang H, Werth S, Caro J, Schiestel T. Desalination, 2006, 199 (1/3): 355.
[137]  Caro J, Schiestel T, Werth S, Wang H, Kleinert A, K?lsch P. Desalination, 2006, 199 (1/3): 415.
[138]  Jiang H, Wang H, Werth S, Schiestel T, Caro J. Angew. Chem. Int. Edit., 2008, 47 (48): 9341.
[139]  Wei Y, Tang J, Zhou L, Li Z, Wang H. Chem. Eng. J., 2012, 183: 473.
[140]  Evdou A, Zaspalis V, Nalbandian L. Fuel,2010, 89 (6): 1265.
[141]  Franca R V, Thursfield A, Metcalfe I S. J. Membrane Sci., 2012, 389: 173.
[142]  Liu J, Cheng H, Jiang B, Lu X, Ding W. Int. J. Hydrogen Energy, 2013, 38 (25): 11090.
[143]  Jiang B, Cheng H, Luo L, Lu X, Zhang N, Liu J. J. Energ. Chem., 2014, 23 (2): 164.
[144]  Cheng H, Yao W, Lu X, Zhou Z, Li C, Liu J. Fuel Process. Technol., 2015, 131: 36.
[145]  Yun K S, Yoo C Y, Yoon S G, Yu J H, Joo J H. J. Membrane Sci., 2015, 486: 222.
[146]  Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334 (6061): 1383.
[147]  Acar C, Dincer I. Int. J. Hydrogen Energy, 2014, 39 (1): 1.
[148]  Dincer I. Int. J. Hydrogen Energy, 2012, 37 (2): 1954.
[149]  Chueh W C, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A. Science, 2010, 330 (6012): 1797.
[150]  Bi D? áková O, Straka P. Int. J. Hydrogen Energy, 2012, 37 (16): 11563.
[151]  Wang Z, Roberts R R, Naterer G F, Gabriel K S. Int. J. Hydrogen Energy, 2012, 37 (21): 16287.
[152]  Funk J E, Reinstrom R M. Ind. Eng. Chem. Process Design and Development, 1966, 5 (3): 336.
[153]  Scheffe J R, Steinfeld A. Mater. Today, 2014, 17 (7): 341.
[154]  Jeong H H, Kwak J H, Han G Y, Yoon K J. Int. J. Hydrogen Energy, 2011, 36 (23): 15221.
[155]  Sim A, Cant N W, Trimm D L. Int. J. Hydrogen Energy, 2010, 35 (17): 8953.
[156]  Zhu X, Wang H, Wei Y, Li K, Cheng X. Mendeleev Commun., 2011, 21 (4): 221.
[157]  Cao Z, Jiang H, Luo H, Baumann S, Meulenberg W A, Voss H, Caro J. Catal. Today, 2012, 193 (1): 2.
[158]  Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J. Angew. Chem. Int. Edit., 2010, 49 (33): 5656.
[159]  Zhu N, Dong X, Liu Z, Zhang G, Jin W, Xu N. Chem. Commun., 2012, 48 (57): 7137.
[160]  Thursfield A, Murugan A, Franca R, Metcalfe I S. Energ. Environ. Sci., 2012, 5 (6): 7421.
[161]  王振(Wang Z), 于波(Yu B), 张文强(Zhang W Q), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2013, (07): 1229.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133