全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

多孔石墨烯材料

DOI: 10.7536/PC150508, PP. 1566-1577

Keywords: 石墨烯,纳米孔,合成方法,新能源材料,电子材料,分子筛,水处理,生物材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

多孔石墨烯是指在二维基面上具有纳米级孔隙的碳材料,是近年来石墨烯缺陷功能化的研究热点。多孔石墨烯不仅保留了石墨烯优良的性质,而且相比惰性的石墨烯表面,孔的存在促进了物质运输效率的提高,特别是原子级别的孔可以起到筛分不同尺寸的离子、分子的作用。更重要的是,孔的引入还有效地打开了石墨烯的能带隙,促进了石墨烯在电子器件领域的应用。本文阐述了多孔石墨烯的一些基本性质和特性,并对其理论研究、制备方法和应用的研究进展进行了评述。其中,多孔石墨烯的制备方法主要包括光刻法、催化刻蚀法、化学气相沉积法、湿法刻蚀、碳热还原法、溶剂热法和自由基攻击法。多孔石墨烯优异的特性使其在能源储存与转换材料(锂离子电池、超级电容器、燃料电池等)、DNA分子检测、化学传感器、场效应晶体管、分子筛和海水淡化等领域具有非常广阔的应用前景。

References

[1]  Williams G, Seger B, Kamat P V. ACS Nano, 2008, 2:1487.
[2]  Akhavan O. Carbon, 2011, 49:11.
[3]  Akhavan O. ACS Nano, 2010, 4:4174.
[4]  Palaniselvam T, Valappil M O, Illathvalappil R, Kurungot S. Energ. Environ. Sci., 2014, 7:1059.
[5]  Peng Y Y, Liu Y M, Chang J K, Wu C H, Ger M D, Pu N W, Chang C L. Carbon, 2015, 81:347.
[6]  Lin Y, Han X, Campbell C J, Kim J W, Zhao B, Luo W, Dai J, Hu L. Adv. Func. Mater., 2015, 25:2920.
[7]  Mangadlao J D, de Leon A C C, Felipe M J L, Advincula R C. Chem. Commun., 2015, 51:7629.
[8]  Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y. J. Power. Sources, 2010, 195:4600.
[9]  He D, Jiang Y, Lv H, Pan M, Mu S. Appl. Catal. B- Environ., 2013, 132:379.
[10]  He D, Kou Z, Xiong Y, Cheng K, Chen X, Pan M, Mu S. Carbon, 2014, 66:312.
[11]  He D, Cheng K, Li H, Peng T, Xu F, Mu S, Pan M. Langmuir, 2012, 28:3979.
[12]  Lv X, Lv W, Wei W, Zheng X, Zhang C, Zhi L, Yang Q H. Chem. Commun., 2015, 51:3911.
[13]  Su C, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P, Bao Q, Enoki T, Chabal Y J, Loh K P. Nat. Commun., 2012, 3:1298.
[14]  Stoller M D, Park S, Zhu Y, An J, Ruoff R S. Nano Lett., 2008, 8:3498.
[15]  Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Carbon, 2012, 50:1699.
[16]  Zhu Y, Murali S, Stoller M D, Ganesh K, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M. Science, 2011, 332:1537.
[17]  Wang H, Sun X, Liu Z, Lei Z. Nanoscale, 2014, 6:6577.
[18]  Yoo E, Kim J, Hosono E, Zhou H S, Kudo T, Honma I. Nano Lett., 2008, 8:2277.
[19]  Novoselov K S, Geim A K, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A. Science, 2004, 306:666.
[20]  Novoselov K, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A. Nature, 2005, 438:197.
[21]  Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N. Science, 2006, 312:1191.
[22]  Nair R, Blake P, Grigorenko A, Novoselov K, Booth T, Stauber T, Peres N, Geim A. Science, 2008, 320:1308.
[23]  Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[24]  Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321:385.
[25]  Li H, Cheng N, Zheng Y, Zhang X, L H, He D, Pan M, Kleitz F, Qiao S Z, Mu S. Adv. Energy. Mater., 2013, 3:1176.
[26]  Du X, Skachko I, Barker A, Andrei E Y. Nat. Nanotechnol., 2008, 3:491.
[27]  Zhang Y, Tan Y W, Stormer H L, Kim P. Nature, 2005, 438:201.
[28]  Katsnelson M, Novoselov K, Geim A. Nature Phys., 2006, 2:620.
[29]  Kane C L, Mele E J. Phys. Rev. Lett., 2005, 95:226801.
[30]  Castro E V, Novoselov K, Morozov S, Peres N, Dos Santos J L, Nilsson J, Guinea F, Geim A, Neto A C. Phys. Rev. Lett., 2007, 99:216802.
[31]  Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F. Nature, 2009, 459:820.
[32]  Son Y W, Cohen M L, Louie S G. Phys. Rev. Lett., 2006, 97:216803.
[33]  Han M Y, ?zyilmaz B, Zhang Y, Kim P. Phys. Rev. Lett., 2007, 98:206805.
[34]  Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett., 2009, 9:1752.
[35]  Qu L, Liu Y, Baek J B, Dai L. ACS Nano, 2010, 4:1321.
[36]  Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E. Science, 2006, 313:951.
[37]  陈旭(Chen X), 何大平(He D P), 木士春(Mu S C).化学进展(Progress in Chemistry), 2013, 25:1292.
[38]  Yazyev O V, Helm L. Phy. Rev. B, 2007, 75:125408.
[39]  Lucchese M M, Stavale F, Ferreira E M, Vilani C, Moutinho M, Capaz R B, Achete C, Jorio A. Carbon, 2010, 48:1592.
[40]  Bai J, Zhong X, Jiang S, Huang Y, Duan X. Nat. Nanotechnol., 2010, 5:190.
[41]  Xu P, Yang J, Wang K, Zhou Z, Shen P. Chinese. Sci. Bull., 2012, 57:2948.
[42]  Blankenburg S, Bieri M, Fasel R, Mullen K, Pignedoli C A, Passerone D. Small, 2010, 6:2266.
[43]  Zhao S, Xue J, Liang L, Wang Y, Yan S. J. Phys. Chem. C, 2012, 116:11776.
[44]  Palaniselvam T, Aiyappa H B, Kurungot S. J. Mater. Chem., 2012, 22:23799.
[45]  Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F. Adv. Funct. Mater., 2012, 22:2632.
[46]  Zhu X, Ning G, Ma X, Fan Z, Xu C, Gao J, Xu C, Wei F. J. Mater. Chem. A, 2013, 1:14023.
[47]  Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z, Johnson A T, Drndic M. Nano Lett., 2010, 10:2915.
[48]  Han T H, Huang Y K, Tan A T, Dravid V P, Huang J. J. Am. Chem. Soc., 2011, 133:15264.
[49]  Koenig S P, Wang L, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[50]  Barone V, Hod O, Scuseria G E. Nano Lett., 2006, 6:2748.
[51]  Li X, Wang X, Zhang L, Lee S, Dai H. Science, 2008, 319:1229.
[52]  Yang J, Ma M, Li L, Zhang Y, Huang W, Dong X. Nanoscale, 2014, 6:13301.
[53]  Qiu W, Nguyen P, Skafidas E. Phys. Chem. Chem. Phys., 2014, 16:1451.
[54]  Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P, Pedersen K. Phys. Rev. Lett., 2008, 100:136804.
[55]  Oswald W, Wu Z. Phys. Rev. B, 2012, 85(11).
[56]  Zhang A, Teoh H F, Dai Z, Feng Y P, Zhang C. Appl. Phys. Lett., 2011, 98:023105.
[57]  Hu L, Wyant S, Muniz A R, Ramasubramaniam A, Maroudas D. J. Appl. Phys., 2015, 117:024302.
[58]  Carpenter C, Christmann A M, Hu L, Fampiou I, Muniz A, Ramasubramaniam A, Maroudas D. Appl. Phys. Lett., 2014, 104:141911.
[59]  Mostério N C B, Fonseca A F. Phys. Rev. B, 2014, 89(19):195437.
[60]  Lei Z, Christov N, Zhao X. Energ. Environ. Sci., 2011, 4:1866.
[61]  Wu Z S, Sun Y, Tan Y Z, Yang S, Feng X, Müllen K. J. Am. Chem. Soc., 2012, 134:19532.
[62]  Zheng C, Zhou X, Cao H, Wang G, Liu Z. J. Power Sources, 2014, 258:290.
[63]  Berrada S, Nguyen V H, Querlioz D, Saint-Martin J, Alarcón A, Chassat C, Bournel A, Dollfus P. Appl. Phys. Lett., 2013, 103:183509.
[64]  Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, Dong C, Wang P, Schwingenschlogl U, Yang W, Zhang X X. Nano Lett., 2012, 12:141.
[65]  Sint K, Wang B, Král P. J. Am. Chem. Soc., 2008, 130:16448.
[66]  Koenig S P, Wang L, Pellegrino J, Bunch J S. Nat. Nanotechnol., 2012, 7:728.
[67]  Venkatesan B M, Bashir R. Nat. Nanotechnol., 2011, 6:615.
[68]  Han S, Wu D, Li S, Zhang F, Feng X. Adv. Mater., 2014, 26:849-64.
[69]  Yuan W, Chen J, Shi G. Mater. Today, 2014, 17:77.
[70]  Fischbein M D, Drndi D? M. Appl. Phys. Lett., 2008, 93:113107.
[71]  Ding J, Du K, Wathuthanthri I, Choi C H, Fisher F T, Yang E H. J. Vac. Sci. Technol. B, 2014, 32:06FF1.
[72]  Thiele C, Felten A, Echtermeyer T J, Ferrari A C, Casiraghi C, v. L?hneysen H, Krupke R. Carbon, 2013, 64:84.
[73]  Yi J, Lee D H, Lee W W, Park W I. J. Phys. Chem. Lett., 2013, 4:2099.
[74]  Lin Y, Watson K A, Kim J W, Baggett D W, Working D C, Connell J W. Nanoscale, 2013, 5:7814.
[75]  Tomita A, Tamai Y. J. Phys. Chem., 1974, 78:2254.
[76]  Baker R, Sherwood R, Dumesic J. J. Catal., 1980, 66:56.
[77]  Liu J, Cai H, Yu X, Zhang K, Li X, Li J, Pan N, Shi Q, Luo Y, Wang X. J. Phys. Chem. C, 2012, 116:15741.
[78]  Di C A, Wei D, Yu G, Liu Y, Guo Y, Zhu D. Adv. Mater., 2008, 20:3289.
[79]  Safron N S, Kim M, Gopalan P, Arnold M S. Adv. Mater., 2012, 24:1041.
[80]  Seidel H, Csepregi L, Heuberger A, Baumg?rtel H. J. Electrochem. Soc., 1990, 137:3612.
[81]  Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, Kong J, Jarillo-Herrero P. Nano Lett., 2009, 9:2600.
[82]  Zhang Y, Li Z, Kim P, Zhang L, Zhou C. ACS Nano, 2011, 6:126.
[83]  Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. J. Am. Chem. Soc., 2013, 135:6431.
[84]  Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Nature, 2009, 458:872.
[85]  Zhang Z, Sun Z, Yao J, Kosynkin D V, Tour J M. J. Am. Chem. Soc., 2009, 131:13460.
[86]  Sinitskii A, Dimiev A, Kosynkin D V, Tour J M. ACS Nano, 2010, 4:5405.
[87]  Zhao X, Hayner C M, Kung M C, Kung H H. ACS Nano, 2011, 5:8739.
[88]  Wang X, Jiao L, Sheng K, Li C, Dai L, Shi G. Sci. Rep., 2013, 3:1996.
[89]  Cheng K, He D, Peng T, Lv H, Pan M, Mu S. Electrochim. Acta, 2014, 132:356.
[90]  Zhu Y, Murali S, Stoller M D, Ganesh K J, Cai W, Ferreira P J, Pirkle A, Wallace R M, Cychosz K A, Thommes M, Su D, Stach E A, Ruoff R S. Science, 2011, 332:1537.
[91]  Zhang L L, Zhao X, Stoller M D, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff R S. Nano Lett., 2012, 12:1806.
[92]  Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Carbon, 2010, 48:3825.
[93]  Zhao X, Zhang L, Murali S, Stoller M D, Zhang Q, Zhu Y, Ruoff R S. ACS Nano, 2012, 6:5404.
[94]  Zhou D, Cui Y, Xiao P W, Jiang M Y, Han B H. Nat. Commun., 2014, 5:4716.
[95]  Nethravathi C, Rajamathi M. Carbon, 2008, 46:1994.
[96]  Qian W, Hao R, Hou Y, Tian Y, Shen C, Gao H, Liang X. Nano Res., 2009, 2:706.
[97]  Choucair M, Thordarson P, Stride J A. Nature Nanotechnol., 2009, 4:30.
[98]  Zhang J, Guo B, Yang Y, Shen W, Wang Y, Zhou X, Wu H, Guo S. Carbon, 2015, 84:469.
[99]  Yang R, Yang K. Carbon, 1985, 23:537.
[100]  Han T H, Huang Y K, Tan A T, Dravid V P, Huang J. J. Am. Chem. Soc., 2011, 133:15264.
[101]  Wu X F, Zhang J, Zhuang Y F, Li J, Han L C, Xiao F J. J. Mater. Sci., 2014, 50:1317.
[102]  Uthaisar C, Barone V. Nano Lett., 2010, 10:2838.
[103]  Fan Z, Yan J, Ning G, Wei T, Zhi L, Wei F. Carbon, 2013, 60:558.
[104]  Zhu X, Zhu Y, Murali S, Stoller M D, Ruoff R S. ACS Nano, 2011, 5:3333.
[105]  Zhu X, Song X, Ma X, Ning G. ACS Appl. Mater. Inter., 2014, 6:7189.
[106]  Jiao L, Zhang L, Wang X, Diankov G, Dai H. Nature, 2009, 458:877.
[107]  Son Y W, Cohen M L, Louie S G. Nature, 2006, 444:347.
[108]  Chen Z, Lin Y M, Rooks M J, Avouris P. Physica E., 2007, 40:228.
[109]  Liu L, Zhang Y, Wang W, Gu C, Bai X, Wang E. Adv. Mater., 2011, 23:1246.
[110]  Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M, Novoselov K. Nat. Mater., 2007, 6:652.
[111]  Wehling T, Novoselov K, Morozov S, Vdovin E, Katsnelson M, Geim A, Lichtenstein A. Nano lett., 2008, 8:173.
[112]  Fowler J D, Allen M J, Tung V C, Yang Y, Kaner R B, Weiller B H. ACS Nano, 2009, 3:301.
[113]  Robinson J A, Snow E S, Badescu S C, Reinecke T L, Perkins F K. Nano Lett., 2006, 6:1747.
[114]  Zhang Y H, Chen Y B, Zhou K G, Liu C H, Zeng J, Zhang H L, Peng Y. Nanotechnology, 2009, 20:185504.
[115]  Suk M E, Aluru N. J. Phys. Chem. Lett., 2010, 1:1590.
[116]  Cohen-Tanugi D, Grossman J C. Nano Lett., 2012, 12:3602.
[117]  Surwade S P, Smirnov S N, Vlassiouk I V, Unocic R R, Veith G M, Dai S, Mahurin S M. Nat. Nanotechnol., 2015.
[118]  Liu H, Dai S, Jiang D E. Nanoscale, 2013, 5:9984.
[119]  Suk M E, Aluru N R. J. Chem. Phys., 2014, 140:084707.
[120]  Sun C, Boutilier M S, Au H, Poesio P, Bai B, Karnik R, Hadjiconstantinou N G. Langmuir, 2014, 30:675.
[121]  Kasianowicz J J, Brandin E, Branton D, Deamer D W. Proc. Natl. Acad. Sci. U. S. A., 1996, 93:13770.
[122]  Fologea D, Gershow M, Ledden B, McNabb D S, Golovchenko J A, Li J. Nano Lett., 2005, 5:1905.
[123]  林祥钦(Lin X Q), 李国霞(Li G X). 化学进展(Progress in Chemistry), 2011, 23:800.
[124]  Peng S, Yang Z, Ni X, Zhang H, Ouyang J, Fangping O. Mater. Res. Express, 2014, 1:015044.
[125]  Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko J A. Nature, 2010, 467:190.
[126]  Garaj S, Liu S, Golovchenko J A, Branton D. Proc. Natl. Acad. Sci.U. S. A., 2013, 110:12192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133