全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

非离子型表面活性剂对木质纤维素酶催化水解的影响及机理

DOI: 10.7536/PC150511, PP. 1555-1565

Keywords: 木质纤维素,纤维素,非离子型表面活性剂,酶解,纤维素酶吸附

Full-Text   Cite this paper   Add to My Lib

Abstract:

木质纤维素的酶解糖化过程是纤维素生物质转化中的关键步骤,也是限制纤维素生物转化生产燃料和化学品的主要瓶颈。大量的研究表明,非离子型表面活性剂能够强化木质纤维素酶解过程,显著提高纤维素的酶催化水解效率。本文综述了非离子型表面活性剂对纯纤维素和木质纤维素底物酶解的影响,分析了底物结构特性、水解条件、纤维素酶组成等诸多因素与表面活性剂作用效果之间的关联,并从纤维素酶的吸附特性、纤维素酶组分间的协同作用等方面对非离子表面活性剂的作用机理进行了总结。结合已有的研究进展和存在的问题,提出了今后表面活性剂对于木质纤维素酶催化水解影响的研究重点方向,即系统分析底物结构、水解条件等因素对表面活性剂作用的宏观影响,以及分析这种作用的热力学和动力学特性,而微观上需要从原子和分子层面上解析表面活性剂与底物和纤维素酶之间的相互作用特性。

References

[1]  Chundawat S P S, Donohoe B S, da Costa Sousa L, Elder T, Agarwal U P, Lu F, Ralph J, Himmel M E, Balan V, Dale B E. Energy & Environmental Science, 2011, 4(3):973.
[2]  Zhang M, Ouyang J, Liu B, Yu H, Jiang T, Cai C, Li X. Bioenergy Research, 2013, 6(4):1252.
[3]  Eriksson T, B?rjesson J, Tjerneld F. Enzyme and Microbial Technology, 2002, 31(3):353.
[4]  Park J W, Takahata Y, Kajiuchi T, Akehata T. Biotechnology and Bioengineering, 1992, 39(1):117.
[5]  Bardant T B, Sudiyarmanto S, Abimanyu H, Hanum A K. Indonesian Journal of Chemistry, 2013, 13(1):53.
[6]  Kim H J, Kim S B, Kim C J. Biotechnology and Bioprocess Engineering, 2007, 12(2):147.
[7]  Helle S S, Duff S J B, Cooper D G. Biotechnology and Bioengineering, 1993, 42(5):611.
[8]  Ouyang J, Dong Z, Song X, Lee X, Chen M, Yong Q. Bioresource technology, 2010, 101(17):6685.
[9]  Mizutani C, Sethumadhavan K, Howley P, Bertoniere N. Cellulose, 2002, 9(1):83.
[10]  Zhou Y, Chen H, Qi F, Zhao X, Liu D. Bioresource Technology, 2015, 182:136.
[11]  B?rjesson J, Engqvist M, Sipos B, Tjerneld F. Enzyme and Microbial Technology, 2007, 41(1):186.
[12]  Yang M, Zhang A, Liu B, Li W, Xing J. Biochemical Engineering Journal, 2011, 56(3):125.
[13]  Okino S, Ikeo M, Ueno Y, Taneda D. Bioresource Technology, 2013, 142:535.
[14]  Lou H, Zhou H, Li X, Wang M, Zhu J Y. Cellulose, 2014, 21(3):1351.
[15]  Wang Z J, Lan T Q, Zhu J Y. Biotechnology Forbiofuels, 2013, 6(1):1.
[16]  Ooshima H, Sakata M, Harano Y. Biotechnology and Bioengineering, 1986, 28(11):1727.
[17]  Gupta R, Lee Y Y. Biotechnology and Bioengineering, 2009, 102(6):1570.
[18]  J?rgensen H, Vibe-Pedersen J, Larsen J, Felby C. Biotechnology and Bioengineering, 2007, 96(5):862.
[19]  Fan Z, South C, Lyford K,Munsie J, Walsum P, Lynd L R. Bioprocess and Biosystems Engineering, 2003, 26(2):93.
[20]  张名佳(Zhang M J), 苏荣欣(Su R X), 齐崴(Qi W), 何志敏(He Z M). 化学进展(Progress in Chemistry), 2009, 21(5).
[21]  Cara C, Moya M, Ballesteros I, Negro M J, González A, Ruiz E. Process Biochemistry, 2007, 42(6):1003.
[22]  Hodge D B, Karim M N, Schell D J, McMillan J D. Bioresource Technology, 2008, 99(18):8940.
[23]  Du J, Li Y, Zhang H, Zheng H, Huang H. Cellulose, 2014, 21(4):2409.
[24]  Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer A S. Applied Biochemistry and Biotechnology, 2007, 143(1):27.
[25]  Kumar R, Wyman C E. Enzyme and Microbial Technology, 2008, 42(5):426.
[26]  Knutsen J S, Liberatore M W. Energy & Fuels, 2010, 24(5):3267.
[27]  Ma X, Yue G, Yu J, Zhang X, Tan T. Journal of Biobased Materials and Bioenergy, 2011, 5(2):275.
[28]  Din N, Damude H G, Gilkes N R, Miller R C, War ren R A, Kilburn D G. Proc. Natl. Acad. Sci. U. S. A. 1994, 91:11383
[29]  Boraston A B, Bolam D, Gilbert H, Davis G. Biochem. J, 2004, 382:769.
[30]  Gilbert H J. Plant Physiology, 2010, 153(2):444.
[31]  Shoseyov O, Shani Z, Levy I. Microbiology and Molecular Biology Reviews, 2006, 70(2):283.
[32]  Kotiranta P, Karlsson J, Siika-Aho M, Medve J, Viikari L, Tjerneld F, Tenkanen M. Applied Biochemistry and Biotechnology, 1999, 81(2):81.
[33]  Várnai A, Siika-aho M, Viikari L. Enzyme and Microbial Technology, 2010, 46(3):185.
[34]  Brash J L, Horbett T A. ACS Symp. Ser., 1995, 602:1.
[35]  Nidetzky B, Steiner W, Hayn M, Claeyssens M. Biochem. J, 1994, 298:705.
[36]  Jeoh T, Wilson D B, Walker L P. Biotechnology Progress, 2006, 22(1):270.
[37]  Andersen N, Johansen K S, Michelsen M, Stenby E, Krogh K, Olsson L. Enzyme and Microbial Technology, 2008, 42(4):362.
[38]  Du R, Huang R, Su R, Zhang M, Wang M, Yang J, Qi W, He Z. RSC Advances, 2013, 3(6):1871.
[39]  Goyal A, Ghosh B, Eveleigh D. Bioresource Technology, 1991, 36(1):37.
[40]  McClellan S J, Franses E I. Colloids and Surfaces B:Biointerfaces, 2003, 28(1):63.
[41]  Kelley D, McClements D J. Food Hydrocolloids, 2003, 17(1):73.
[42]  Santos S F, Zanette D, Fischer H, Itri R. Journal of Colloid and Interface Science, 2003, 262(2):400.
[43]  Kumar R, Wyman C E. Biotechnology and Bioengineering, 2009, 102(6):1544.
[44]  Li J, Li S, Fan C, Yan Z. Colloids and Surfaces B:Biointerfaces, 2012, 89:203.
[45]  陈洪章(Chen H Z), 邱卫华(Qiu W H). 化学进展(Progress in Chemistry), 2007, 19(7):1116.
[46]  Yang B, Wyman C E. Biotechnology and Bioengineering, 2004, 86(1):88.
[47]  Studer M H, DeMartini J D, Davis M F, Sykes R W, Davison B, Keller M, Tuskan G A, Wyman C E. Proc. Nat. Acad. Sc. U. S. A., 2011, 108(15):6300.
[48]  Yu Z, Jameel H, Chang H, Park S. Bioresource Technology, 2011, 102(19):9083.
[49]  Simmons B A, Loqué D, Ralph J. Current Opinion in Plant Biology, 2010, 13(3):312.
[50]  Zhu J Y, Wang G S, Pan X J, Gleisenr R. Chemical Engineering Science, 2009, 64(3):474.
[51]  Vidal B C, Dien B S, Ting K C, Singh V. Applied Biochemistry and Biotechnology, 2011, 164(8):1405.
[52]  Del Rio L F, Chandra R P, Saddler J N. Bioresource Technology, 2012, 107:235.
[53]  Jeoh T, Ishizawa C I, Davis M F, Himmel M E, Adney W S, Johnson D K. Biotechnology and Bioengineering, 2007, 98(1):112.
[54]  Huang R, Su R, Qi W, He Z. Biotechnology Progress, 2010, 26(2):384.
[55]  Rollin J A, Zhu Z, Sathitsuksanoh N, Zhang Y H P. Biotechnology and Bioengineering, 2011, 108(1):22.
[56]  Meng X, Ragauskas A J. Current Opinion in Biotechnology, 2014, 27:150.
[57]  Wang Q Q, He Z, Zhu Z, Zhang Y H P, Ni Y, Luo X L, Zhu J Y. Biotechnology and Bioengineering, 2012, 109(2):381.
[58]  Arantes V, Saddler J N. Biotechnol Biofuels, 2010, 3(4):1.
[59]  Leu S Y, Zhu J Y. Bioenergy Research, 2013, 6(2):405.
[60]  B?rjesson J, Peterson R, Tjerneld F. Enzyme and Microbial Technology, 2007, 40(4):754.
[61]  Sipos B, Dienes D, Schleicher á, Perazzini R, Crestini C, Siika-Aho M, Réczey K. Enzyme and Microbial Technology, 2010, 47(3):84.
[62]  Zheng Y, Pan Z, Zhang R, Wang D, Jenkins B. Biotechnology for Fuels and Chemicals. Humana Press, 2008:351.
[63]  Zhang Y, Xu X, Zhang Y, Li J. Biotechnology and Bioprocess Engineering, 2011, 16(5):930.
[64]  Cui L, Liu Z, Hui L F, Si C L. BioResources, 2011, 6(4):3850.
[65]  Kristensen J B, B?rjesson J, Bruun M H, Tjerneld F, Jorgensen H. Enzyme and Microbial Technology, 2007, 40(4):888.
[66]  Wu J, Ju L K. Biotechnology Progress, 1998, 14(4):649.
[67]  Xingzhong Y, Yunshan L, Guangming Z, Weiwei W. Hydrolysis of pretreated rice straw with surfactants at low cellulase dosage, Sciencepaper online.(2010-01-26). http://www.paper.edu.cn/html/releasepaper/2010/01/1052/
[68]  Seo D J, Fujita H, Sakoda A. Adsorption, 2011, 17(5):813.
[69]  Sipos B, Szilágyi M, Sebestyén Z, Perazzini R, Dienes D, Jakab E, Crestini C, Réczey K. Comptes Rendus Biologies, 2011, 334(11):812.
[70]  Shevchenko S M, Chang K, Dick D G, Gregg D J, Saddler J N. Cellulose Chemistry and Technology, 2001, 35(5/6):487.
[71]  Li J, Henriksson G, Gellerstedt G. Bioresource Technology, 2007, 98(16):3061.
[72]  Nakagame S, Chandra R P, Kadla J F, Saddler J N. Biotechnology and Bioengineering, 2011, 108(3):538.
[73]  Nakagame S, Chandra R P, Kadla J F, Saddler J N. Bioresource Technology, 2011, 102(6):4507.
[74]  Moxley G, Gaspar A R, Higgins D, Xu H. Journal of Industrial Microbiology & Biotechnology, 2012, 39(9):1289.
[75]  Nakagame S, Chandra R P, Saddler J N. Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, 2011. 145.
[76]  Pan X. Journal of Biobased Materials and Bioenergy, 2008, 2(1):25.
[77]  Van Dyk J S, Pletschke B I. Biotechnology Advances, 2012, 30(6):1458.
[78]  Felby C, Thygesen L G, Kristensen J B, J?rgensen, H, Elder T. Cellulose, 2008, 15(5):703.
[79]  Kristensen J B, Felby C, J?rgensen H. Biotechnology for Biofuels, 2009, 2(1):11.
[80]  Pimenova N V, Hanley T R. Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4-7, 2003, in Breckenridge, CO. Humana Press, 2004. 347.
[81]  Modenbach A A, Nokes S E. Biomass and Bioenergy, 2013, 56:526.
[82]  Wang W, Kang L, Wei H, Arora R, Lee Y Y. Applied Biochemistry and Biotechnology, 2011, 164(7):1139.
[83]  Champagne P, Li C. Bioresource Technology, 2009, 100(23):5700.
[84]  Reese E T. J. Appl. Biochem., 1980, 2(1):36e9.
[85]  Lou H, Zhu J Y, Lan T Q, Lai H, Qiu X. ChemSusChem, 2013, 6(5):919.
[86]  Lan T Q, Lou H, Zhu J Y. BioEnergy Research, 2013, 6(2):476.
[87]  Eriksson T, Karlsson J, Tjerneld F. Applied Biochemistry and Biotechnology, 2002, 101(1):41.
[88]  Eckard A D, Muthukumarappan K, Gibbons W. BioEnergy Research, 2014, 7(1):389.
[89]  Qing Q, Yang B, Wyman C E. Bioresource Technology, 2010, 101(15):5941.
[90]  Kurakake M, Ooshima H, Kato J, Harano Y. Bioresource Technology, 1994, 49(3):247.
[91]  Kaar W E, Holtzapple M T. Biotechnology and Bioengineering, 1998, 59(4):419.
[92]  Hemmatinejad N, Vahabzadeh F, Kordestani S S. Iranian Polymer Journal, 2002, 11:333.
[93]  Kim W, Gamo Y, Sani Y M, Wusiman Y, Ogawa1 S, Karita S, Goto M. Asian Australasian Journal of Animal Sciences, 2006, 19(5):684.
[94]  Seo D J, Fujita H, Sakoda A. Bioresource Technology, 2011, 102(20):9605.
[95]  Yoon S H, Robyt J F. Enzyme and Microbial Technology, 2005, 37(5):556.
[96]  Chen N, Fan J B, Xiang J, Chen J, Liang Y. Biochimica et Biophysica Acta(BBA)-Proteins and Proteomics, 2006, 1764(6):1029.
[97]  Chylenski P, Felby C, Haven M , Gama M, Selig M J. Bio-technology Letters, 2012, 34(8):1475.
[98]  Kim M H, Lee S B, Ryu D D Y, Reese E T. Enzyme and Mi-crobial Technology, 1982, 4(2):99.
[99]  Chia-wen C H, Cannella D, J?rgensen H, Felby C, Thygesen L G. Biotechnology for Biofuels, 2015, 8(1):52.
[100]  Zhang Y, Zhang Y, Tang L. Journal of Chemical Technology and Biotechnology, 2011, 86(1):115.
[101]  Palonen H, Tjerneld F, Zacchi G,Tenkanen M. Journal of Biotechnology, 2004, 107(1):65.
[102]  Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler J. Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals. Humana Press, 2005. 163.
[103]  Norde W, Favier J P. Colloids and Surfaces, 1992, 64(1):87.
[104]  Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K. Biotechnology and Bioengineering, 2011, 108(12):2823.
[105]  Chernoglazov V M, Ermolova O V, Klyosov A A. Enzyme and Microbial Technology, 1988, 10(8):503.
[106]  Haynes C A, Norde W. Journal of Colloid and Interface Science, 1995, 169(2):313.
[107]  Converse A O, Matsuno R, Tanaka M, Taniguchi M. Biotechnology and Bioengineering, 1988, 32(1):38.
[108]  Sanderson K. Nature, 2011, 474(7352):S12.
[109]  J?rgensen H, Kristensen J B, Felby C. Biofuels, Bioproducts and Biorefining, 2007, 1(2):119.
[110]  Sun Y, Cheng J. Bioresource technology, 2002, 83(1):1.
[111]  Zhao X, Zhang L, Liu D. Biofuels, Bioproducts and Biorefining, 2012, 6(4):465.
[112]  Zhang Y H P, Lynd L R. Biotechnology and Bioengineering, 2004, 88(7):797.
[113]  Liu J, Shi J, Li J, Yuan X. Enzyme and Microbial Technology, 2011, 49(4):360.
[114]  Quiroz-Casta?eda R E, Folch-Mallol J L. Sustainable Degradation of Lignocellulosic Biomass-Techniques, Applications and Commercialization, Chandel A K, da Silva S S, Eds. 2013. 275.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133