全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
化学进展  2015 

酶的改造及其催化工程应用

DOI: 10.7536/PC150419, PP. 1649-1657

Keywords: 生物催化,酶工程,酶定向进化,酶固定化,多酶催化

Full-Text   Cite this paper   Add to My Lib

Abstract:

酶作为生物催化剂在食品、饲料、化妆品以及医药等诸多领域逐渐发挥重要作用。但是,酶对外界环境如pH和温度等很敏感,而实际的反应条件和生物体的生理环境差异较大,因此酶在实际应用中不稳定、容易失活,催化效率下降。酶的这一特点大大限制了其工业化应用。目前,定向进化、糖基化以及化学修饰等方法被广泛用于酶分子的改造以提高其稳定性、催化效率以及扩大其底物范围。其中,定向进化通过模拟自然进化机制,在体外改造基因从而获得性能优化的酶突变体,已经成为了酶改造的重要技术。在酶的实际应用过程中,介质工程、固定化以及多酶催化体系构建等技术被广泛用于提高酶的催化效率。其中,多酶催化体系由于其底物通道效应可以显著提高级联酶反应的效率而备受关注。本文首先重点介绍了近年酶应用的现状,然后从酶定向进化、糖基化以及化学修饰的角度总结了酶改造的方法,最后从介质工程、酶固定化以及体外多酶催化体系等方面进一步总结了酶实际应用中的催化工程策略。

References

[1]  Sheldon R A, van Pelt S. Chem. Soc. Rev., 2013, 42:6223.
[2]  Clouthier C M, Pelletier J N. Chem. Soc. Rev., 2012, 41:1585.
[3]  Li S, Yang X, Yang S, Zhu M, Wang X. Comput. Struct. Biotechnol. J., 2012, 2:e201209017.
[4]  Illanes A, Cauerhff A, Wilson L, Castro G R. Bioresour. Technol., 2012, 115:48.
[5]  龚劲松(Gong J S), 李恒(Li H), 陆震鸣(Lu Z M), 史劲松(Shi J S), 许正宏(Xu Z H).化学进展(Prog. Chem.), 2015, 27:448.
[6]  Cobucci-Ponzano B, Perugino G, Rossi M, Moracci M. Protein Eng. Des. Sel., 2011, 24:21.
[7]  Juturu V, Wu J C. Renew. Sust. Energ. Rev., 2014, 33:188.
[8]  Feng S J, Li C, Xu X L, Wang X Y. J. Mol. Catal. B Enzym., 2006, 43:63.
[9]  He D M, Kaleem I, Qin S Y, Dai D Z, Liu G Y, Li C. Process Biochem., 2010, 45:1916.
[10]  Chen L, Wei B, Zhang X, Li C. Small, 2013, 9:2331.
[11]  Zou S, Liu G, Kaleem I, Li C. Process Biochem., 2013, 48:358.
[12]  Sorgedrager M J, van Rantwijk F, Huisman G W, Sheldon R A. Adv. Synth. Catal., 2008, 350:2322.
[13]  牛凡凡(Niu F F), 聂昌军(Nie C J), 陈勇(Chen Y), 孙小玲(Sun X L). 化学进展(Prog. Chem.), 2014, 26:1942.
[14]  Ni Y, Li C X, Zhang J, Shen N D, Bornscheuer U T, Xu J H. Adv. Synth. Catal., 2011, 353:1213.
[15]  Kosjek B, Fleitz F J, Dormer P G, Kuethe J T, Devine P N. Tetrahedron-Asymmetry, 2008, 19:1403.
[16]  Stueckler C, Winkler C K, Bonnekessel M, Faber K. Adv. Synth. Catal., 2010, 352:2663.
[17]  Bernhardt R, Urlacher V B. Appl. Microbiol. Biotechnol., 2014, 98:6185.
[18]  Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Nature, 2012, 485:185.
[19]  Denard C A, Ren H Q, Zhao H M. Curr. Opin. Chem. Biol., 2015, 25:55.
[20]  Rao G D, Lee J K, Zhao H M. Appl. Microbiol. Biotechnol., 2013, 97:5861.
[21]  Wu Q, Soni P, Reetz M T. J. Am. Chem. Soc., 2013, 135:1872.
[22]  Pham S Q, Pompidor G, Liu J, Li X D, Li Z. Chem. Commun., 2012, 48:4618.
[23]  Wang B, Tang X, Ren G, Liu J, Yu H. Biochem. Eng. J., 2009, 46:345.
[24]  Wang D, Wang J, Wang B, Yu H. J. Mol. Catal. B Enzym., 2012, 82:18.
[25]  Cobb R E, Chao R, Zhao H M. AICHE J., 2013, 59:1432.
[26]  Reetz M T, Carballeira J D, Vogel A. Angew. Chem. Int. Edit., 2006, 45:7745.
[27]  Wang M, Zhao H M. ACS Catal., 2014, 4:1219.
[28]  Li Y F, Hu F J, Wang X M, Cao H, Liu D L, Yao D S. J. Biotechnol., 2013, 163:401.
[29]  Scanlon T C, Dostal S M, Griswold K E. Biotechnol. Bioeng., 2014, 111:232.
[30]  Han M H, Wang X F, Ding H Y, Jin M Y, Yu L G, Wang J L, Yu X B. Enzyme Microb. Technol., 2014, 54:32.
[31]  Tauzin A S, Sulzenbacher G, Lafond M, Desseaux V, Reca I B, Perrier J, Bellincampi D, Fourquet P, Leveque C, Giardina T. Biochimie, 2014, 101C:39.
[32]  Shental-Bechor D, Levy Y. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:8256.
[33]  Zou S P, Xie L P, Liu Y L, Kaleem I, Zhang G F, Li C. J. Biotechnol., 2012, 157:399.
[34]  Zou S P, Huang S, Kaleem I, Li C. J. Biotechnol., 2013, 164:75.
[35]  Dabulis K, Klibanov A M. Biotechnol. Bioeng., 1993, 41:566.
[36]  Kim H, Choi Y K, Lee J, Lee E, Park J, Kim M J. Angew. Chem. Int. Edit., 2011, 50:10944.
[37]  Kim C, Lee J, Cho J, Oh Y, Choi Y K, Choi E, Park J, Kim M J. J. Org. Chem., 2013, 78:2571.
[38]  Garcia-Galan C, Barbosa O, Fernandez-Lafuente R. Enzyme Microb. Technol., 2013, 52:211.
[39]  Jadhav S B, Singhal R S. Carbohydr. Polym., 2012, 90:1811.
[40]  Zhu J Y, Zhang Y F, Lu D N, Zare R N, Ge J, Liu Z. Chem. Commun., 2013, 49:6090.
[41]  Castillo B, Sola R J, Ferrer A, Barletta G, Griebenow K. Biotechnol. Bioeng., 2008, 99:9.
[42]  Ritter D W, Newton J M, McShane M J. RSC Adv., 2014, 4:28036.
[43]  Jia R, Hu Y, Liu L, Jiang L, Zou B, Huang H. ACS Catal., 2013, 3:1976.
[44]  Aumiller W M, Davis B W, Hashemian N, Maranas C, Armaou A, Keating C D. J. Phys. Chem. B, 2014, 118:2506.
[45]  Reis P, Holmberg K, Watzke H, Leser M E, Miller R. Adv. Colloid Interface Sci., 2009, 147/148:237.
[46]  Feng X, Patterson D A, Balaban M, Fauconnier G, Emanuelsson E A C. Chem. Eng. J., 2013, 221:407.
[47]  Cacace D N, Keating C D. J. Mat. Chem. B, 2013, 1:1794.
[48]  Naushad M, Alothman Z A, Khan A B, Ali M. Int. J. Biol. Macromol., 2012, 51:555.
[49]  Goldfeder M, Fishman A. Appl. Microbiol. Biotechnol., 2014, 98:545.
[50]  申刚义(Shen G Y), 于婷婷(Yu W T), 刘美蓉(Liu M R), 崔勋(Cui X). 化学进展(Prog. Chem.), 2013, 25:1198.
[51]  Hanefeld U, Gardossi L, Magner E. Chem. Soc. Rev., 2009, 38:453.
[52]  DiCosimo R, McAuliffe J, Poulose A J, Bohlmann G. Chem. Soc. Rev., 2013, 42:6437.
[53]  Franssen M C R, Steunenberg P, Scott E L, Zuilhof H, Sanders J P M. Chem. Soc. Rev., 2013, 42:6491.
[54]  代云容(Dai Y R), 牛军峰(Niu J F), 殷立峰(Yin L F), 刘佳(Liu J), 蒋国翔(Jiang G X). 化学进展(Prog. Chem.), 2010, 22:1808.
[55]  Zhou Z, Hartmann M. Chem. Soc. Rev., 2013, 42:3894.
[56]  胡燚(Hu Y), 刘维明(Liu W M), 邹彬(Zou B), 唐苏苏(Tang S S), 黄和(Huang H). 化学进展(Prog. Chem.), 2010, 22:1656.
[57]  Rossi L M, Costa N J S, Silva F P, Wojcieszak R. Green Chem., 2014, 16:2906.
[58]  Qiao L, Lv B, Feng X, Li C. J. Biotechnol., 2015, 203:68.
[59]  Feng X, Patterson D A, Balaban M, Emanuelsson E A C. Chem. Eng. Res. Des., 2013, 91:1684.
[60]  Tielmann P, Kierkels H, Zonta A, Ilie A, Reetz M T. Nanoscale, 2014, 6:6220.
[61]  You C, Myung S, Zhang Y H P. Angew. Chem. Int. Edit., 2012, 51:8787.
[62]  Haggie P M, Verkman A S. J. Biol. Chem., 2002, 277:40782.
[63]  Dueber J E, Wu G C, Malmirchegini G R, Moon T S, Petzold C J, Ullal A V, Prather K L J, Keasling J D. Nat. Biotechnol., 2009, 27:753.
[64]  You C, Zhang Y H P. ACS Synth. Biol., 2013, 2:102.
[65]  You C, Zhang Y H P. Adv. Biochem. Eng. Biotechnol., 2013, 131:89.
[66]  Zhang Y H P. Biotechnol. Adv., 2011, 29:715.
[67]  Albertsen L, Chen Y, Bach L S, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen U H. Appl. Environ. Microbiol., 2011, 77:1033.
[68]  Andre C, Kim S W, Yu X H, Shanklin J. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:3191.
[69]  Li Y, Cirino P C. Biotechnol. Bioeng., 2014, 111:1273.
[70]  You C, Chen H G, Myung S, Sathitsuksanoh N, Ma H, Zhang X Z, Li J Y, Zhang Y H P. Proc. Natl. Acad. Sci. U. S. A., 2013, 110:7182.
[71]  Hirakawa H, Kakitani A, Nagamune T. Biotechnol. Bioeng., 2013, 110:1858.
[72]  Jia F, Narasimhan B, Mallapragada S. Biotechnol. Bioeng., 2014, 111:209.
[73]  Watanabe J, Ishihara K. Biomacromolecules, 2006, 7:171.
[74]  Jia F, Zhang Y J, Narasimhan B, Mallapragada S K. Langmuir, 2012, 28:17389.
[75]  Jia F, Narasimhan B, Mallapragada S K. AICHE J., 2013, 59:355.
[76]  Keighron J D, Keating C D. Langmuir, 2010, 26:18992.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133