全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采用全钒液流电池储能的UDVR提升DFIG-LVRT能力研究

DOI: 10.13336/j.1003-6520.hve.2015.10.002, PP. 3185-3192

Keywords: 全钒液流电池,不间断动态电压恢复器,PR控制,柔性故障穿越,风力发电,双馈电机,储能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提升双馈电机(DFIG)风电系统柔性故障穿越(FFRT)能力,提出了采用全钒液流电池(VRB)储能的三单相不间断动态电压恢复器(UDVR)应对策略。对电网电压不平衡时DFIG转子侧变换器和网侧变换器暂态特性进行了理论分析,对全钒液流电池充放电特性进行了仿真分析,对单相UDVR的工作原理、矢量关系及其控制策略进行了研究。建立了基于VRB储能的UDVR改进DFIG风电系统故障穿越能力仿真模型。采用正常运行时UDVR旁路备用,电网故障时UDVR进行电压补偿的方式,验证了DFIG-FFRT特性。结果表明对于严重的电网对称和不对称故障情况,UDVR可向电网注入补偿电压,整个暂态过程机组向电网注入了友好型绿色能源,提升了DFIG机组无超调FFRT运行能力。

References

[1]  Carrasco J M, Franquelo L G, Bialasiewicz J T, et al . Power electronic systems for the grid integration of renewable energy sources: a survey[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1002-1016.
[2]  贺益康,徐海亮. 双馈风电机组电网适应性问题及其谐振控制解决方案[J]. 中国电机工程学报, 2014, 34(29): 5188-5203. HE Yikang, XU Hailiang. The grid adaptability problem of DFIG-based wind turbines and its solution by resonant control scheme[J]. Proceedings of the CSEE, 2014, 34(29): 5188-5203.
[3]  袁小明,程时杰,文劲宇. 储能技术在解决大规模风电并网问题中的应用前景分析[J]. 电力系统自动化,2013,37(1):14-18. YUAN Xiaoming, CHENG Shijie, WEN Jinyu. Prospects analysis of energy storage application in grid integration of large-scale wind power[J]. Automation of Electric Power Systems, 2013, 37(1): 14-18.
[4]  徐殿国,王 伟,陈 宁. 基于撬棒保护的双馈电机风电场低电压穿越动态特性分析[J]. 中国电机工程学报,2010,30(22):29-36. XU Dianguo, WANG Wei, CHEN Ning. Dynamic characteristic analysis of doubly-fed induction generator low voltage ride-through based on crowbar protection[J]. Proceedings of the CSEE, 2010, 30(22): 29-36.
[5]  张艳霞,童 锐,赵 杰,等. 双馈风电机组暂态特性分析及低电压穿越方案[J]. 电力系统自动化,2013,37(16):7-11. ZHANG Yanxia, TONG Rui, ZHAO Jie, et al . Transient characteristics analysis and low voltage ride-through scheme of doubly-fed wind turbine generators[J]. Automation of Electric Power Systems, 2013, 37(16): 7-11.
[6]  朱 颖,李建林,赵 斌. 双馈型风力发电系统低电压穿越策略仿真[J]. 电力自动化设备,2010,30(6):20-24. ZHU Ying,LI Jianlin, ZHAO Bin. Simulation of LVRT strategy for DFIG wind power system[J]. Electric Power Automation Equipment, 2010, 30(6): 20-24.
[7]  Meegahapola L, Littler T, Flynn D. Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults[J]. IEEE Transactions on Sustainable Energy, 2010, 1(3): 152-162.
[8]  Liang J, Qiao W, Harley R. Feed-forward transient current control for low-voltage ride-through enhancement of DFIG wind turbines[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 836-843.
[9]  Ramirez D, Martinez S, Platero C A, et al . Low-voltage ride-through capability for wind generators based on dynamic voltage restorers[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 195-203.
[10]  Wessels C, Gebhardt F, Fuchs F. Fault ride-through of a DFIG wind turbine using a dynamic voltage restorer during symmetrical and asymmetrical grid faults[J]. IEEE Transactions on Power Electronics, 2011, 26(3): 807-815.
[11]  Zhang S, Tseng K, Choi S S, et al . Advanced control of series voltage compensation to enhance wind turbine ride through[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 763-772.
[12]  许建兵,江全元,石庆均. 基于储能型DVR的双馈风电机组电压穿越协调控制[J]. 电力系统自动化,2013,37(4):14-20. XU Jianbing, JIANG Quanyuan, SHI Qingjun. Coordinated control of voltage ride through for DFIG wind turbine systems using energy based DVR[J]. Automation of Electric Power Systems, 2013, 37(4): 14-20.
[13]  Omar A B, Adel N. Series voltage compensation for DFIG wind turbine low voltage ride through solution[J]. IEEE Transactions on Energy Converters, 2011, 26(1): 272-280.
[14]  洪芦诚,姜齐荣,王 亮,等. 实现风电场低电压穿越的MMC型动态电压调节器[J]. 电力系统自动化,2012,36(22):25-29. HONG Lucheng, JIANG Qirong, WANG Liang, et al . MMC-based dynamic voltage restorer realizing low voltage ride-through capability of wind farms[J]. Automation of Electric Power Systems, 2012, 36(22): 25-29.
[15]  李 辉,付 博,杨 超,等. 多级钒电池储能系统的功率优化分配及控制策略[J]. 中国电机工程学报,2013,33(16):70-77. LI Hui, FU Bo, YANG Chao, et al . Power optimization distribution and control strategies of multistage vanadium redox flow battery energy storage systems [J]. Proceedings of the CSEE, 2013, 33(16): 70-77.
[16]  Beaudin M, Zareipour H, Schellenberglabe A, et al . Energy storage for mitigating the variability of renewable electricity sources: an updated review[J]. Energy for Sustainable Development, 2010, 14(4): 302-314.
[17]  Ontiveros L J, Mercado P E. Thyristor-based flexible ac transmission system for controlling the vanadium redox flow battery[J]. IET Renewable Power Generation, 2013, 7(3): 201-209.
[18]  毕大强,葛宝明,王文亮,等. 基于钒电池储能系统的风电场并网功率控制[J]. 电力系统自动化,2010,34(13):72-78. BI Daqiang, GE Baoming, WANG Wenliang, et al . VRB energy storage system based power control of grid-connected wind farm[J]. Automation of Electric Power Systems, 2010, 34(13): 72-78.
[19]  任永峰,胡宏彬,薛 宇,等. 全钒液流电池-超级电容混合储能平抑直驱式风电功率波动研究[J]. 高电压技术,2015,41(7):2127-2134. REN Yongfeng, HU Hongbin, XUE Yu, et al . Vanadium redox baterysuper capacitor hybrid energy storage system for smooth direct-drive wind turbine power fluctuation[J]. High Voltage Engineering, 2015, 41(7): 2127-2134.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133