全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

输电线路覆冰导线对流换热的数值模拟

DOI: 10.13336/j.1003-6520.hve.2015.10.035, PP. 3441-3446

Keywords: 输电线路,覆冰,融冰,对流换热,Nusselt数,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

现有架空线覆冰、融冰模型忽略研究对象的温度场分布,难以进行局部热平衡分析。针对该问题,通过对比确定对流换热是覆冰、融冰过程中重要的热量损失原因,并建立了裸导线及覆冰导线的对流换热有限元模型,获取不同Reynolds数下覆冰对象的Nusselt数分布曲线。结果表明覆冰对象表面对流换热差异明显,当Reynolds数为10000时,裸导线及圆形覆冰导线迎风区域-45°~45°范围内的局部Nusselt数平均值分别为总平均值的1.45倍和1.48倍;随着Reynolds数增加,上述倍数值略有降低。最后拟合出了局部平均Nusselt数计算公式,该公式有利于提高对流换热数值计算精度,可用于改进覆冰、融冰模型。

References

[1]  李庆峰,范 峥,吴 穹,等. 全国输电线路覆冰情况调研及事故分析[J]. 电网技术,2008,32(9):33-36. LI Qingfeng, FAN Zheng, WU Qiong, et al . Investigation of ice-covered transmission lines and analysis on transmission line failures caused by ice coating in China[J]. Power System Technology, 2008, 32(9): 33-36.
[2]  刘春城,刘 佼. 输电线路导线覆冰机理及雨凇覆冰模型[J]. 高电压技术,2011,37(1):241-248. LIU Chuncheng, LIU Jiao. Ice accretion mechanism and glaze loads model on wires of power transmission lines[J]. High Voltage Engineering, 2011, 37(1): 241-248.
[3]  顾小松,王汉青,刘和云. 架空导线覆冰实验及模拟[J]. 中南大学学报,2011,42(9):2860-2864. GU Xiaosong, WANG Hanqing, LIU Heyun. Experiment and simulation of icing on overhead transmission lines[J]. Journal of Central South University, 2011, 42(9): 2860-2864.
[4]  Farzaneh M. Atmosphere icing of power networks[M]. Berlin, Germany: Springer, 2008.
[5]  陈亦平,刘文涛,和识之,等. 直流融冰装置在南方电网的应用分析[J]. 南方电网技术,2011,5(4):73-77. CHEN Yiping, LIU Wentao, HE Shizhi, et al . Analysis on the application of DC de-icer in China Southern Power Grid[J]. Southern Power System Technology, 2011, 5(4): 73-77.
[6]  蒋兴良,兰 强. 导线临界防冰电流及其影响因素分析[J]. 高电压技术,2012,38(5):1225-1232. JIANG Xingling, LAN Qiang. Analysis on critical anti-icing current of conductor and its impacting factors[J]. High Voltage Engineering, 2012, 38(5): 1225-1232.
[7]  刘和云,周 迪,傅俊萍,等. 防止导线覆冰临界电流的传热研究[J]. 中国电力,2001,34(3):42-44. LIU Heyun, ZHOU Di, FU Junping, et al . Heat transfer investigation on critical current to prevent wires from icing[J]. Electric Power, 2001, 34(3): 42-44.
[8]  Huneault M, Langheit C, Caron J, et al . Combined models for glaze ice accretion and de-icing of current-carrying electrical conductors[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1611-1615.
[9]  Makkonen L, Stallabrass J R. Experiments on the cloud droplet collision efficiency of cylinders[J]. Journal of Climate and Applied Meteorology, 1984, 26(10): 1406-1411.
[10]  Peter Z, Farzaneh M, Kiss L I. Assessment of the current intensity for preventing ice accretion on overhead conductors[J]. IEEE Transactions on Power Delivery, 2007, 12(1): 565-574.
[11]  Makkonen L. Models for the growth of rime, glaze, icicles and wet snow on structures[J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2000, 358(1776): 2913-2939.
[12]  Kollar L E, Farzaneh M, Karev A R. Modeling droplet collision and coalescence in an icing wind tunnel and the influence of these processes on droplet size distribution[J]. International Journal of Multiphase Flow, 2005, 31(1): 69-92.
[13]  Naterer G F. Coupled liquid film and solidified layer growth with impinging supercooled droplets and Joule heating[J]. International Journal of Heat and Fluid Flow, 2003, 24(2): 223-235.
[14]  Peter Z. Modeling and simulation of the ice melting process on a current-carrying conductor[D]. Quebec, Canada: Quebec University, 2006.
[15]  梁曦东,李雨佳. 输电导线的覆冰时变仿真模型[J]. 高电压技术,2014,40(2):336-343. LIANG Xidong, LI Yujia. Time-dependent simulation model of ice accretion on transmission line[J]. High Voltage Engineering, 2014, 40(2): 336-343.
[16]  Fu P, Farzaneh M. A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(2): 181-188.
[17]  蒋兴良,范松海,胡建林,等. 输电线路直流短路融冰的临界电流分析[J]. 中国电机工程学报,2010,30(1):111-116. JIANG Xingliang, FAN Songhai, HU Jianlin, et al . Analysis of critical ice-melting current for short-circuit DC transmission line[J]. Proceedings of the CSEE, 2010, 30(1): 111-116.
[18]  陆佳政,胡建平. 雪峰山脉小沙江自然灾害试验场覆冰与融冰试验[J]. 高电压技术,2014,40(2):388-394. LU Jiazheng, HU Jianping. Icing accretion and ice-melting test at Xiaoshajiang natural disasters test site in Xuefeng mountain[J]. High Voltage Engineering, 2014, 40(2): 388-394.
[19]  张 暕,何 青,蓝 澜,等. 高压输电线路热力融冰影响因素的分析[J]. 中南大学学报,2013,44(1):449-455. ZHANG Jian, HE Qing, LAN Lan, et al . Analysis of influencing factors of thermal de-icing of high-voltage transmission line[J]. Journal of Central South University, 2013, 44(1): 449-455.
[20]  吕锡锋,何 青. 高压输电线路电热融冰技术[J]. 中国电力,2014,47(1):17-22. LÜ Xifeng, HE Qing. Electric ice-melting technology of high voltage transmission lines[J]. Electric Power, 2014, 47(1): 17-22.
[21]  黄新波,欧阳丽莎. 输电线路覆冰关键影响因素分析[J]. 高电压技术,2011,37(7):1677-1682. HUANG Xinbo, OUYANG Lisha. Analysis on key influence factor of transmission line icing[J]. High Voltage Engineering, 2011, 37(7): 1677-1682.
[22]  范松海. 输电线路短路电流融冰过程与模型研究[D]. 重庆:重庆大学,2010. FAN Songhai. Study on process and model of ice-melting with short circuit current on iced conductor[D]. Chongqing, China: Chongqing University, 2010.
[23]  杨世铭,陶文铨. 传热学[M]. 北京:高等教育出版社,1998. YANG Shiming, TAO Wenquan. Heat transfer[M]. Beijing, China: Higher Education Press, 1998.
[24]  向 泽,蒋兴良,胡建林,等. 雪峰山试验站自然条件下导线覆冰厚度形状校正系数[J]. 高电压技术,2014,40(11):3606-3611. XIANG Ze, JIANG Xingling, HU Jianlin, et al . Shape correction coefficient of the icing thickness on conductors under natural icing condition at Xuefeng Mountain Test Station[J]. High Voltage Engineering, 2014, 40(11): 3606-3611.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133