杨 庆,董 岳,司马文霞,等. 鸟粪导致交流输电线路塔窗-导线空气间隙放电的特性研究[J]. 高电压技术,2014,40(1):55-60. YANG Qing, DONG Yue, SIMA Wenxia, et al . Discharge characteristics of tower-line air gap of AC transmission line caused by bird streamer[J]. High Voltage Engineering, 2014, 40(1): 55-60.
[2]
蒋兴良,董冰冰,张志劲,等. 绝缘子覆冰闪络研究进展[J]. 高电压技术,2014,40(2):317-335. JIANG Xingliang, DONG Bingbing, ZHANG Zhijin, et al . Research and development on flashover of ice-covered insulators[J]. High Voltage Engineering, 2014, 40(2): 317-335.
[3]
周 凯,赵 威,陶文彪,等. XLPE电缆绝缘水树老化的无机修复机理及试验分析[J]. 高电压技术,2014,40(1):67-73. ZHOU Kai, ZHAO Wei, TAO Wenbiao, et al . Method and mechanism of the inorganic rejuvenation for water tree aged XLPE cables[J]. High Voltage Engineering, 2014, 40(1): 67-73.
[4]
Ackermann T. Wind power in power systems[M]. New Jersy, USA: Wiley, 2012: 732-764.
[5]
Allan R N, Grigg C H, Newey D A, et al . Probabilistic Power flow techniques extended and applied to operational decision making[J]. Proceedings of the Institution of Electrical Engineers, 1976, 123(12): 1317-1324.
[6]
Borkowaka B. Probabilistic load flow[J]. IEEE Transactions on Power Apparatus and Systems, 1974, 27(3): 752-759.
[7]
Zhang P, Lee S T. Probabilistic load flow computation using the method of combined Cumlants and Gram-Charlier expansion[J]. IEEE Transactions on Power Systems, 2004, 19(1): 676-682.
[8]
王成山,郑海峰,谢莹华,等. 计及分布式发电的配电系统随机潮流计算[J]. 电力系统自动化,2005,29(24):39-44. WANG Chengshan, ZHENG Haifeng, XIE Yinghua, et al . Probabilistic power flow containing distributed generation in distributed system[J]. Automation of Electric Power Systems, 2005, 29(24): 39-44.
[9]
Fang S D, Cheng H Z, Song Y. Stochastic optimal reactive power dispatch method based on point estimation considering load margin[C]∥Proceedings of 2014 IEEE Power Engineering Society Meeting. Washington D.C., USA: IEEE, 2014: 26-31.
[10]
杨 欢,邹 斌. 含相关性随机变量的概率潮流三点估计法[J]. 电力系统自动化,2012,36(15):52-56. YANG Huan, ZOU Bin. A three point estimate method for solving probabilistic power flow problems with correlated random variables[J]. Automation of Electric Power Systems, 2012, 36(15): 52-56.
[11]
于 晗,钟志勇,黄杰波,等. 采用拉丁超立方采样的电力系统概率潮流计算方法[J]. 电力系统自动化,2009,33(21):32-35. YU Han, ZHONG Zhiyong, HUANG Jiebo, et al . A probabilistic load flow calculation method with Latin hypercube sampling[J]. Automation of Electric Power Systems, 2009, 33(21): 32-35.
[12]
Hu Z C, Wang X F. A probabilistic load flow method considering branch outages[J]. IEEE Transactions on Power Systems, 2006, 21(2): 507-514.
[13]
Singhee A, Rutenbar R A. Why quasi-Monte Carlo is better than Monte Carlo or Latin hypercube sampling for statistical circuit analysis[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2010, 29(11): 1763-1776.
[14]
Rosenblatt M. Remarks on a multivariate transformation[J]. The Annals of Mathematical Statistics, 1952, 23(3): 470-472.
[15]
Lebrun R, Dutfoy A. Do Rosenblatt and Nataf is probabilistic transformations really differ[J]. Probabilistic Engineering Mechanics, 2009, 24(4): 577-584.
[16]
Chen X, Tung Y K. Investigation of polynomial normal transform[J]. Structural Safety, 2003, 25(4): 423-445.
[17]
蔡德福,石东源,陈金富. 基于多项式正态变换和拉丁超立方采样的概率潮流计算方法[J]. 中国电机工程学报,2013,33(13):92-101. CAI Defu, SHI Dongyuan, CHEN Jinfu. Probabilistic load flow calculation method based on polynomial normal transformation and Latin hypercube sampling[J]. Proceedings of the CSEE, 2013, 33(13): 92-101.
[18]
John V, Angelov I, Oncul A A, et al . Techniques for the reconstruction of a distribution from a finite number of its moments[J]. Chemical Engineering Science, 2007, 2(11): 2890-2904.
[19]
Chen Y, Wen J Y, Cheng S J. Probabilistic load flow method based on Nataf transformation and Latin hypercube sampling[J]. IEEE Transactions on Power Systems, 2013, 4(2): 294-301.
[20]
Hogg R V, Craig A T. Introduction to mathematical statistics[M]. 3rd ed. New York, USA: Macmillan, 1971: 423-514.
[21]
Niederreiter H. Random number generation and quasi-Monte Carlo methods[M]. Philadelphia, USA: SIAM, 1992: 112-167.
[22]
Niederreiter H. Quasi-Monte Carlo methods and pseudo-random numbers[J]. Bulletin American Mathematical Society, 1978, 84(6): 957-1041.
[23]
Caflisch R E, Morokoff W, Owen A. Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension[J]. Journal of Computational Finance, 1997, 1(1): 27-46.
[24]
Kiefer J. On large deviations of the empirical D.F. of vector chance variables and a law of the iteration logarithm[J]. Pacific Journal of Mathematical, 1961, 11(2): 649-660.
[25]
Singhee A. Novel algorithm for fast statistical analysis of scaled circuits[D]. Pittsburge, USA: Carnegie Mellon University, 2007.
[26]
Bratley P, Fox B L. Algorithm 659: implementing Sobol’s quasi-random sequence generator[J]. ACM Transactions on Mathematical Software, 1988, 14(1): 88-100.