全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

以全寿命周期成本为判据的近海风电场高压海底电缆选型标准

DOI: 10.13336/j.1003-6520.hve.2015.08.019, PP. 2674-2680

Keywords: 近海风电场,海底电缆,全寿命周期成本,Markov模型,故障损失成本,选型

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了结合海底电缆寿命周期特点、制定适用于近海风电场高压海底电缆的选型标准,以海缆传输容量大于风电场设计向外传输容量为约束条件,构建了包括购置、敷设、损耗、故障损失、运行维护以及回收净投资成本的海缆全寿命周期成本(LCC)模型,并以LCC等额年值最小作为选型标准。以国内某海上风电场海底电缆选型为案例进行计算分析。结果表明,购置、损耗、故障损失成本与自身LCC占比较重,最高分别达到26.4%、30.8%、62.0%;所有方案前期投资与自身LCC占比≤40%。当电压等级相同时,单芯海缆方案损耗成本至少比三芯海缆方案高出4.68×103万元;而当线芯数相同时,高电压等级故障损失成本至少比低电压等级海缆方案高出8.8×103万元;2回110kV3×500mm2高压XLPE绝缘钢丝铠装海缆方案LCC等额年值(3.08×103万元/a)最小,该方案最优。

References

[1]  Van E B,Van H D, Reza M. Economic comparison of VSC HVDC and HVAC as transmission system for a 300 MW offshore wind farm[J]. European Transactions on Electrical Power, 2010, 20(5): 661-671.
[2]  Martinez A I, Luis M J, Kortabarria I, et al . Transmission alternatives for offshore electrical power[J]. Renewable &Sustainable Energy Reviews, 2009, 13(5): 1027-1038.
[3]  周远翔,赵健康,刘 睿,等. 高压/超高压电力电缆关键技术分析及展望[J]. 高电压技术,2014,40(9):2593-2612. ZHOU Yuanxiang, ZHAO Jiankang, LIU Rui, et al . Key technical analysis and prospect of high voltage and extra-high voltage power cable[J]. High Voltage Engineering, 2014, 40(9): 2593-2612.
[4]  马为民,吴方劼,杨一鸣,等. 柔性直流输电技术的现状及应用前景分析[J]. 高电压技术,2014,40(8):2429-2439. MA Weimin, WU Fangjie, YANG Yiming, et al . Flexible HVDC transmission technology’s and tomorrow[J]. High Voltage Engineering, 2014, 40(8): 2429-2439.
[5]  Won J N, Moon W S, Hah J S, et al . A study on siting of HVAC offshore substation for wind power plant using submarine cable cost model[J]. The Transaction of The Korean Institute of Electrical Electrical Engineering, 2013, 62(4): 451-456.
[6]  Guide G, Fosso O B. Investment cost of HVAC cable reactive power compensation offshore[C]∥Energy Conference and Exhibition (ENERGY-CON). Florence, Italy: IEEE, 2012: 299-304.
[7]  沃泽克. 海底电缆:设计、安装、修复和环境影响[M]. 北京:机械工业出版社,2011:15-107. Thomas Worzyk. Submarine power cables: design, installation, repair, environmental aspects[M]. Beijing, China: China Machine Press, 2011: 15-107.
[8]  IEEE std 1120-1990 IEEE guide to the factors to be considered in the planning, design, and installation of submarine power and communications cables[S], 1990.
[9]  Kling W L, Hendriks R L, Denboon J H. Advanced transmission solutions for offshore wind farms[C]∥Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21 st Century. Pittsburgh, PA : IEEE, 2008: 1-6.
[10]  Erilich S M, Brakelmann H. Integration of wind power into the German high voltage transmission grid[C]∥IEEE Power Engineering Society General Meeting. New Jersey, USA: IEEE, 2007: 1-6.
[11]  Hunter H, Gary W, Ping K W, et al . A study of submarine power grid planning for offshore wind farm[C]∥IEEE Power and Energy Society General Meeting. New Jersey, USA: IEEE, 2011: 1-5.
[12]  Chih J C, Yuan K W, Gia Y H. Comparative evaluation of the HVDC and HVAC link is integrated in a large offshore wind farm-an actual case study in Taiwan[J]. Industry Applications, 2012, 48(5): 1639-1648.
[13]  王志新,吴 杰,徐 烈,等. 大型海上风电场并网VSC-HVDC变流器关键技术[J]. 中国电机工程学报,2013,33(19):14-33. WANG Zhixin, WU Jie, XU Lie, et al . Key technologies of large offshore wind farm VSC-HVDC converters for grid integration[J]. Proceedings of the CSEE, 2013, 33(19): 14-33.
[14]  王 晟,冯春媚,文 安,等. 海上风电直流传输网络的成本效益分析[J]. 电力系统自动化,2013,37(13):36-43. WANG Sheng, FENG Chunmei, WEN An, et al . Cost and benefit analysis of VSC-HVDC schemes for offshore wind power transmission[J]. Automation of Electric Power Systems, 2013, 37(13): 36-43.
[15]  Zubiaga M, Abad G, Barrena J A, et al . Evaluation and selection of AC transmission lay-out for large offshore wind farm[C]∥13 th European Conference on Power Electronics and Applications. New Jersey, USA: IEEE, 2009: 1-6.
[16]  Mahidhar N, Shirshak K D. Optimal design of an offshore wind farm layout[C]∥Power Electronic, Electrical Drives, Automation and Motion. Ischia, ETA: SPEEDAM, 2008: 1470-1474.
[17]  Sheng W, Jun L, Janaka E. Optimised topology design and comparison for offshore transmission[C]∥47 th International Universities Power Engineering Conference. Washington DC, USA: IEEE, 2012: 1-6.
[18]  Don H. Economic considerations underlying the adoption of HVDC and HVAC for the connection of an offshore wind farm in Korea[J]. Journal of Electrical Engineering & Technology, 2012, 7(12): 157-162.
[19]  Hopewell P D, Castro F S, Bailey D I. Optimising the design of offshore wind farm collection networks[C]∥Proceedings of the 41 st International. Newcastle, UK: UPEC, 2006: 84-88.
[20]  Stalder O. The life cycle costs(LCC) of entire rail networks: an international comparision[J]. Rail International, 2001, 32(4): 26-31.
[21]  Gluch P, Baumann H. The life cycle costing(LCC) approach: a conceptual discussion of its usefulness of environmental decision-making[J]. Building and Environment, 2004, 39(5): 571-580.
[22]  刘 剑,张 勇,杜志叶,等. 交流输电线路设计中的全寿命周期成本敏感度分析[J].高电压技术,2010,36(6):1554-1559. LIU Jian, ZHANG Yong, DU Zhiye, et al . Life cycle cost sensitivity analysis in AC transmission lines design[J]. High Voltage Engineering, 2010, 36(6): 1554-1559.
[23]  刘汉生,刘 剑,李俊娥,等. 基于全寿命周期成本评估的特高压直流输电线路导线选型[J]. 高电压技术,2012,38(2):310-315. LIU Hansheng, LIU Jian, LI Jun’e, et al . Conductors selection of UHVDC transmission lines based on life cycle cost[J]. High Voltage Engineering, 2012, 38(2): 310-315.
[24]  柳 璐,程浩忠,马则良,等. 考虑全寿命周期成本的输电网多目标规划[J]. 中国电机工程学报,2012,32(22):46-54. LIU Lu, CHENG Haozhong, MA Zeliang, et al . Multi objective transmission expansion planning considering life cycle cost[J]. Proceedings of the CSEE, 2012, 32(22): 46-54.
[25]  曹 杨. 基于LCC理论的电力设备采购评标方法及应用研究[D]. 重庆:重庆大学,2008:26-27. CAO Yang. Research on electric power equipment procuring evaluation and application[D]. Chongqing, China: Chongqing University, 2008: 26-27.
[26]  Arkell C A, Galloway S J, Parsons E B, et al . Design, manufacture and installation of 150 kV submarine cable system for the Java-Madure interconnection[J]. Generation, Transmission and Distribution, 1989, 136(3): 121-129.
[27]  Cooper J H, Polasek M J. Planning and installation of the 138 kV south padre island submarine cable[J]. Power Delivery, 1993, 8(4): 1675-1681.
[28]  Ault G W, Bell K R W, Galloway S J. Calculation of economic transmission connection capacity for wind power generation[J]. IET Renewable Power Generation, 2007, 1(1): 61-69.
[29]  吕安强,李永倩,李 静,等. 基于BOTDR的光纤复合海底电缆应变/温度监测[J]. 高电压技术,2014,40(2):533-539. LÜ Anqiang, LI Yongqian, LI Jing, et al . Strain and temperature monitoring of 110 kV optical fiber composite submarine power cable based on brillouin optical time domain reflectometer[J]. High Voltage Engineering, 2014, 40(2): 533-539.
[30]  帅军庆. 电力企业资产全寿命周期管理理论、方法及应用[M]. 北京:中国电力出版社,2010:175-182. SHUAI Junqing. Life cycle management theory, method and application of electric power enterprise assets[M]. Beijing, China: China Electrical Power press, 2010: 175-182.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133