全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大气压非平衡等离子体射流

DOI: 10.13336/j.1003-6520.hve.2015.08.012, PP. 2602-2624

Keywords: 大气压非平衡等离子体,等离子体射流,脉冲放电,活性粒子,等离子体医学,驱动电源,气体放电

Full-Text   Cite this paper   Add to My Lib

Abstract:

大气压非平衡等离子体射流(APNP-Js)的显著优点是可以在开放空间内而非狭窄放电间隙内(如介质阻挡放电)产生非平衡等离子体,APNP-Js已成为低温等离子体应用领域的1项新型关键技术。为此,首先从驱动电源的角度出发,分别介绍了直流、交流、射频、微波、脉冲和双电源驱动的几种典型APNP-Js。其次比较了不同电源驱动的APNP-Js特性,发现在消耗功率相同的情况下,脉冲驱动模式下的APNP-Js长度更长,APNP-Js推进速度更快,活性粒子数密度更高,而气体温度则保持在常温。再次进一步分析了电源参数对APNP-Js的影响,①随着频率从1Hz上升至射频范围,APNP-Js长度总体变短,APNP-Js推进形状由“等离子体子弹”转变为连续柱状;②随着脉冲上升沿从几μs降低至50ns,不仅APNP-Js推进速度加快,而且APNP-Js长度增加,电子温度更高,活性更强;③通过比较正负极性电压驱动的APNP-Js特性,发现负极性APNP-Js长度更短,APNP-Js推进速度更慢,射流携带电流更小,但等离子体通道中电场强度更高。最后讨论了驱动电源特性与APNP-Js参数之间的关系,并对APNP-Js面临的一些关键问题和发展方向进行了展望,如利用最少的电源功率来驱动APNP-Js以获得最高的活性粒子数密度、电源输出能量耦合进等离子体后如何分配优化等。

References

[1]  Naidis G V, Walsh J L. The effects of an external electric field on the dynamics of cold plasma jets-experimental and computational studies[J]. Journal of Physics D:Applied Physics, 2013, 46(9): 0952039.
[2]  Xiong Q, Lu X P, Ostrikov K, et al . Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes: a comparative analysis[J]. Physics of Plasmas, 2010, 17(4): 0435064.
[3]  Walsh J L, Shi J J, Kong M G. Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets[J]. Applied Physics Letters, 2006, 88(17): 171501.
[4]  Hofmann S, Bruggeman P. Comparison of a He and an Ar cold RF atmospheric-pressure plasma jet operating in continuous and pulsed RF modes[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2332-2333.
[5]  Hu J T, Liu X Y, Liu J H, et al . The effect of applied electric field on pulsed radio frequency and pulsed direct current plasma jet array[J]. Physics of Plasmas, 2012, 19(6): 63505.
[6]  Olszewski P, Walsh J. The manipulation of atmospheric pressure dielectric barrier plasma jets[J]. Plasma Sources Science & Technology, 2012, 21(3): 34007.
[7]  Xiong Q, Lu X, Xian Y, et al . Experimental investigations on the propagation of the plasma jet in the open air[J]. Journal of Applied Physics, 2010, 107(7): 0733027.
[8]  Wu S, Lu X, Pan Y. Effects of seed electrons on the plasma bullet propagation[J]. Current Applied Physics, 2013, 131(SI): S1-S5.
[9]  Walsh J L, Kong M G. Frequency effects of plasma bullets in atmospheric glow discharges[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 954-955.
[10]  Wu S, Xu H, Lu X, et al. Effect of pulse rising time of pulse dc voltage on atmospheric pressure non-equilibrium plasma[J]. Plasma Processes and Polymers, 2013, 10(2): 136-140.
[11]  Boeuf J, Yang L L, Pitchford L C. Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmospheric pressure[J]. Journal of Physics D:Applied Physics, 2013, 46(1): 0152011.
[12]  Xiong Z, Lu X, Xian Y, et al . On the velocity variation in atmospheric pressure plasma plumes driven by positive and negative pulses[J]. Journal of Applied Physics, 2010, 108(10): 103303.
[13]  Jiang C, Chen M T, Gundersen M A. Polarity-induced asymmetric effects of nanosecond pulsed plasma jets[J]. Journal of Physics D: Applied Physics, 2009, 42: 232002.
[14]  Sretenovic? G B, Krstic? I B, Kovac?evic? V V, et al . Spectroscopic measurement of electric field in atmospheric-pressure plasma jet operating in bullet mode[J]. Applied Physics Letters, 2011, 99(16): 161502.
[15]  Sretenovic G B, Krstic I B, Kovacevic V V, et al. Spectroscopic study of low-frequency helium DBD plasma jet[J]. IEEE Transactions on Plasma Science, 2012, 40(11): 2870-2878.
[16]  Naidis G V. Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects[J]. Applied Physics Letters, 2011, 98(14): 141501.
[17]  Babayan S E, Jeong J Y, Schütze A, et al . Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet[J]. Plasma Sources Science and Technology, 2001, 10(4): 573-578.
[18]  Babayan S E, Jeong J Y, Tu V J, et al . Deposition of silicon dioxide films with an atmospheric-pressure plasma jet[J]. Plasma Sources Science and Technology, 1998, 7(3): 286-288.
[19]  Fricke K, Steffen H, von Woedtke T, et al . High rate etching of polymers by means of an atmospheric pressure plasma jet[J]. Plasma Processes and Polymers, 2011, 8(1): 51-58.
[20]  Tsai T, Staack D. Low-temperature polymer deposition in ambient air using a floating-electrode dielectric barrier discharge jet[J]. Plasma Processes and Polymers, 2011, 8(6): 523-534.
[21]  Wang D, Yang Q, Guo Y, et al . One step growth of TiO 2 crystal trees by atmospheric pressure plasma jet[J]. Materials Letters, 2011, 65(15/16): 2526-2529.
[22]  Kieft I E, Kurdi M, Stoffels E. Reattachment and apoptosis after plasma-needle treatment of cultured cells[J]. IEEE Transactions on Plasma Science, 2006, 34(4): 1331-1336.
[23]  Nowling G R, Babayan S E, Jankovic V, et al . Remote plasma-enhanced chemical vapour deposition of silicon nitride at atmospheric pressure[J]. Plasma Sources Science and Technology, 2002, 11(1): 97-103.
[24]  Ionita E R, Ionita M D, Stancu E C, et al . Small size plasma tools for material processing at atmospheric pressure[J]. Applied Surface Science, 2009, 255(10): 5448-5452.
[25]  Ayan H, Yildirim E D, Pappas D D, et al . Development of a cold atmospheric pressure microplasma jet for freeform cell printing[J]. Applied Physics Letters, 2011, 99(11): 11150211.
[26]  Lowke J J. Plasma predictions: past, present and future[J]. Plasma Sources Science and Technology, 2013, 22(2): 0230022.
[27]  Samukawa S, Hori M, Rauf S, et al . The 2012 plasma roadmap[J]. Journal of Physics D: Applied Physics, 2012, 45(25): 25300125.
[28]  Jeong J Y, Babayan S E, Tu V J, et al . Etching materials with an atmospheric-pressure plasma jet[J]. Plasma Sources Science and Technology, 1998, 7(3): 282-285.
[29]  Zhang X, Ptasinska S. Growth of silicon oxynitride films by atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2014, 47(14): 14520214.
[30]  Jeong J Y, Babayan S E, Schutze A, et al . Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet[J]. Journal of Vacuum Science & Technology A, 1999, 17(5): 2581-2585.
[31]  Sakai O, Tachibana K. Plasmas as metamaterials: a review[J]. Plasma Sources Science and Technology, 2012, 21(1): 0130011.
[32]  Chu P K., Lu X. Low temperature plasma technology: methods and applications[M]. Florida, USA: CRC Press, 2013: 1-493.
[33]  杨津基. 气体放电[M]. 北京:科学出版社,1983:1-403. YANG Jinji. Gas discharge[M]. Beijing, China: Science Press, 1983: 1-403.
[34]  Raizer Y P. Gas discharge physics[M]. Berlin Heidelberg, Germany: Springer-Verlag, 1991: 1-449.
[35]  Lieberman M A. Lichtenberg A J. Principles of plasma discharges and materials processing[M]. New York, USA: Wiley, 1994: 1-800.
[36]  曾 嵘,庄池杰,余占清,等. 长空气间隙放电研究的挑战与进展[J]. 高电压技术,2014,40(10):2945-2955. ZENG Rong, ZHUANG Chijie, YU Zhanqing, et al . Challenges and achievement in long air gap discharge research[J]. High Voltage Engineering, 2014, 40(10): 2945-2955.
[37]  王新新,付洋洋. 气体放电的相似性[J]. 高电压技术,2014,40(10):2966-2972. WANG Xinxin, FU Yangyang. Similarity in gas discharges[J]. High Voltage Engineering, 2014, 40(10): 2966-2972.
[38]  欧阳吉庭,张子亮,张 宇,等. 空气负电晕Trichel脉冲特性的实验研究[J]. 高电压技术,2014,40(4):1194-1200. OUYANG Jiting, ZHANG Ziliang, ZHANG Yu, et al . Experimental study on the characteristics of negative-corona trichel pulses in air[J]. High Voltage Engineering, 2014, 40(4): 1194-1200.
[39]  吴 云,李应红. 等离子体流动控制与点火助燃研究进展[J]. 高电压技术,2014,40(7):2024-2038. WU Yun, LI Yinghong. Progress in research of plasma-assisted flow control, ignition and combustion[J]. High Voltage Engineering, 2014, 40(7): 2024-2038.
[40]  Becker K H, Kogelschatz U, Schoenbach K H, et al . Non-equilibrium air plasmas at atmospheric pressure[M]. Bristol, UK: Institute of Physics Publishing, 2005: 1-700.
[41]  Kim J Y, Wei Y, Li J, et al . 15-μm-sized single-cellular-level and cell-manipulatable microplasma jet in cancer therapies[J]. Biosensors and Bioelectronics, 2010, 26(2): 555-559.
[42]  Cao Z, Nie Q Y, Kong M G. A cold atmospheric pressure plasma jet controlled with spatially separated dual-frequency excitations[J]. Journal of Physics D: Applied Physics, 2009, 42(22): 222003.
[43]  Li Q, Takana H, Pu Y, et al . A nonequilibrium argon-oxygen planar plasma jet using a half-confined dielectric barrier duct in ambient air[J]. Applied Physics Letters, 2012, 100(13): 133501.
[44]  Nie Q, Ren C, Wang D, et al . A simple cold Ar plasma jet generated with a floating electrode at atmospheric pressure[J]. Applied Physics Letters, 2008, 75(1): 11503.
[45]  Hong Y, Yoo S, Lee B. An atmospheric-pressure nitrogen-plasma jet produced from microdischarges in a porous dielectric[J]. Journal of Electrostatics, 2011, 69(2): 92-96.
[46]  Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Applied Physics Letters, 2008, 75(11): 111501.
[47]  Cao Z, Walsh J L, Kong M G. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Applied Physics Letters, 2009, 94(2): 21501.
[48]  Hong Y C, Uhm H S, Yi W J. Atmospheric pressure nitrogen plasma jet: observation of striated multilayer discharge patterns[J]. Applied Physics Letters, 2008, 75(5): 51504.
[49]  Li X, Di C, Jia P, et al . Characteristics of a direct current-driven plasma jet operated in open air[J]. Applied Physics Letters, 2013, 103(14): 144107.
[50]  Keidar M, Shashurin A, Volotskova O, et al . Cold atmospheric plasma in cancer therapy[J]. Physics of Plasmas, 2013, 20(5): 57101.
[51]  Kolb J F, Mohamed A A H, Price R O, et al . Cold atmospheric pressure air plasma jet for medical applications[J]. Applied Physics Letters, 2008, 75(24): 241501.
[52]  Deng X L, Nikiforov A Y, Vanraes P, et al . Direct current plasma jet at atmospheric pressure operating in nitrogen and air[J]. Journal of Applied Physics, 2013, 113(2):23305.
[53]  Kieft I E, Laan E P V D, Stoffels E. Electrical and optical characterization of the plasma needle[J]. New Journal of Physics, 2004, 6(1): 149.
[54]  Lu X, Wu S, Chu P K, et al . An atmospheric-pressure plasma brush driven by sub-microsecond voltage pulses[J]. Plasma Sources Science and Technology, 2011, 20(6): 65009.
[55]  Hong Y C, Uhm H S. Microplasma jet at atmospheric pressure[J]. Applied Physics Letters, 2006, 89(22): 22150422.
[56]  Lu X, Cao Y, Yang P, et al . An RC plasma device for sterilization of root canal of teeth[J]. IEEE Transactions on Plasma Science, 2009, 37(5): 668-673.
[57]  Lu X, Xiong Z, Zhao F, et al . A simple atmospheric pressure room-temperature air plasma needle device for biomedical applications[J]. Applied Physics Letters, 2009, 95(18): 18150118.
[58]  Pei X, Lu X, Liu J, et al . Inactivation of a 25.5 mu m Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet[J]. Journal of Physics D:Applied Physics, 2012, 45(16): 16520516.
[59]  Robert E, Sarron V, Ries D, et al . Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun[J]. Plasma Sources Science and Technology, 2012, 21(3): 0340173.
[60]  Kim H, Brockhaus A, Engemann J. Atmospheric pressure argon plasma jet using a cylindrical piezoelectric transformer[J]. Applied Physics Letters, 2009, 95(21): 21150121.
[61]  Sands B L, Ganguly B N, Tachibana K. A streamer-like atmospheric pressure plasma jet[J]. Applied Physics Letters, 2008, 92(15): 15150315.
[62]  Li X, Yuan N, Jia P, et al . A plasma needle for generating homogeneous discharge in atmospheric pressure air[J]. Physics of Plasmas, 2010, 17(9): 0935049.
[63]  Zhu W, Lopez J L. A DC non-thermal atmospheric-pressure plasma microjet[J]. Plasma Sources Science and Technology, 2012, 21(3): 0340183.
[64]  Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications[J]. Applied Physics Letters, 2005, 87(11): 11390211.
[65]  郝致远,高 博,吴 波,等. 基于锥形管的环?板电极结构大气压等离子体射流特性[J]. 高电压技术,2014,40(10):3098-3104. HAO Zhiyuan, GAO Bo, WU Bo, et al. Characteristics of ar atmospheric pressure plasma jet generated by ring-plane electrodes with tapered tube[J]. High Voltage Engineering, 2014, 40(10): 3098-3104.
[66]  侯世英,罗书豪,孙 韬,等. 大气压放电氦气等离子体射流特性[J]. 高电压技术,2014,40(4):1207-1213. HOU Shiying, LUO Shuhao, SUN Tao, et al . Characteristics of atmospheric pressure helium plasma jets[J]. High Voltage Engineering, 2014, 40(4): 1207-1213.
[67]  方 志,靳 君,张 荐,等. 大气压Ar/H 2 O等离子体射流的放电特性[J]. 高电压技术,2014,40(7):2049-2056. FANG Zhi, JIN Jun, ZHANG Jian, et al . Characteristics of atmospheric pressure Ar/H 2 O plasma jet discharge[J]. High Voltage Engineering, 2014, 40(7): 2049-2056.
[68]  李雪辰,鲍文婷,贾鹏英,等. 大气压刷形等离子体羽的放电特性[J]. 高电压技术,2014,40(1):166-172. LI Xuechen, BAO Wenting, JIA Pengying, et al . Discharge characteristics of a brush-shaped plasma plume under atmospheric pressure[J]. High Voltage Engineering, 2014, 40(1): 166-172.
[69]  柳晶晶. 大气压He/H 2 O等离子体放射流作用下生理盐水中H2O2的生成[J]. 高电压技术,2013,39(9):2241-2247. LIU Jingjing. Hydrogen peroxide formation in saline solution withatmospheric He/H 2 O plasma jet[J]. High Voltage Engineering, 2013, 39(9): 2241-2247.
[70]  邵先军,常正实,张增辉,等. 大气压氦气与氩气等离子体射流形成机理的对比研究[J]. 高电压技术,2013,39(9):2201-2206. SHAO Xianjun, CHANG Zhengshi, ZHANG Zenghui, et al. Comparison of formation mechanism between helium and argon atmospheric pressure plasma jets[J]. High Voltage Engineering, 2013, 39(9): 2201-2206.
[71]  魏文赋,吴 坚,李兴文,等. 基于快速ICCD照相、纹影照相及发射光谱法的激光诱导等离子体特性[J]. 高电压技术,2013,39(9):2173-2179. WEI Wenfu, WU Jian, LI Xingwen, et al. Characteristics of laser produced plasmas obtained by fast ICCD photography, schlieren photography and optical emission spectroscopy[J]. High Voltage Engineering, 2013, 39(9): 2173-2179.
[72]  侯世英,罗书豪,刘 坤,等. 双环电极大气压氦气等离子体射流的特性及其影响因素[J]. 高电压技术,2013,39(7):1569-1576. HOU Shiying, LUO Shuhao, LIU Kun, et al . Characteristics and their influencing factors of double-wrapped electrode induced atmospheric pressure plasma jet[J]. High Voltage Engineering, 2013, 39(7): 1569-1576.
[73]  Park G Y, Park S J, Choi M Y, et al . Atmospheric-pressure plasma sources for biomedical applications[J]. Plasma Sources Science and Technology, 2012, 21(4): 0430014.
[74]  Xian Y, Lu X, Wu S, et al . Are all atmospheric pressure cold plasma jets electrically driven[J]. Applied Physics Letters, 2012, 100(12): 123702.
[75]  Teschke M, Kedzierski J, Finantu-Dinu E G, et al . High-speed photographs of a dielectric barrier atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 310-311.
[76]  Shashurin A, Shneider M N, Dogariu A, et al . Temporal behavior of cold atmospheric plasma jet[J]. Applied Physics Letters, 2009, 94(23): 231504.
[77]  Shashurin A, Shneider M N, Keidar M. Measurements of streamer head potential and conductivity of streamer column in cold nonequilibrium atmospheric plasmas[J]. Plasma Sources Science & Technology, 2012, 21(3): 0340063.
[78]  Choi J, Takano N, Urabe K, et al . Measurement of electron density in atmospheric pressure small-scale plasmas using CO(2)-laser heterodyne interferometry[J]. Plasma Sources Science and Technology, 2009, 18(3): 0350133.
[79]  Yonemori S, Nakagawa Y, Ono R, et al . Measurement of OH density and air-helium mixture ratio in an atmospheric-pressure helium plasma jet[J]. Journal of Physics D:Applied Physics, 2012, 45(22): 22520222.
[80]  Pei X, Wu S, Xian Y, et al . On OH density of an atmospheric pressure plasma jet by laser-induced fluorescence[J]. IEEE Transactions on Plasma Science, 2014, 42(51): 1206-1210.
[81]  Naidis G V. Modelling of OH production in cold atmospheric-pressure He-H 2 O plasma jets[J]. Plasma Sources Science and Technology, 2013, 22(3): 0350153.
[82]  Jeong J Y, Babayan S E, Tu V J, et al . Etching materials with an atmospheric-pressure plasma jet[J]. Plasma Sources Science and Technology, 1998, 7(3): 282-285.
[83]  Snyder S C, Crawford D M, Fincke J R. Dependence on the scattering angle of the electron temperature and electron density in Thomson-scattering measurements on an atmospheric-pressure plasma jet [J]. Physical Review E, 2000, 61(6B): 7261.
[84]  Li S, Wang D, Zhu W, et al . Evaluations of electron density and temperature in atmospheric-pressure radio-frequency helium plasma jet[J]. Japanese Journal of Applied Physics, Part 1: Regular Papers Brief Communications & Review Papers, 2006, 45(12): 9213-9215.
[85]  Hofmann S, van Gessel A F H, Verreycken T, et al . Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets [J]. Plasma Sources Science and Technology, 2012, 21(6): 0695016.
[86]  Qian M, Ren C, Wang D, et al . Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes[J]. Journal of Applied Physics, 2010, 107(6): 0633036.
[87]  Knake N, Reuter S, Niemi K, et al . Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 194006.
[88]  Xiong Q, Nikiforov A Y, Li L, et al . Absolute OH density determination by laser induced fluorescence spectroscopy in an atmospheric pressure RF plasma jet[J]. The European Physical Journal D, 2012, 66(11):281.
[89]  Reuter S, Niemi K, Schulz-von der Gathen V, et al . Generation of atomic oxygen in the effluent of an atmospheric pressure plasma jet[J]. Plasma Sources Science and Technology, 2009, 18(1): 15006.
[90]  Verreycken T, Mensink R, van der Horst R, et al . Absolute OH density measurements in the effluent of a cold atmospheric-pressure Ar-H 2 O RF plasma jet in air[J]. Plasma Sources Science and Technology, 2013, 22(5): 0550145.
[91]  Sakiyama Y, Knake N, Schroeder D, et al . Gas flow dependence of ground state atomic oxygen in plasma needle discharge at atmospheric pressure[J]. Applied Physics Letters, 2010, 97(15): 15150115.
[92]  Vorac J, Dvorak P, Prochazka V, et al . Measurement of hydroxyl radical (OH) concentration in an argon RF plasma jet by laser-induced fluorescence[J]. Plasma Sources Science and Technology, 2013, 22(2): 0250162.
[93]  Jia F, Ishikawa K, Takeda K, et al . Spatiotemporal behaviors of absolute density of atomic oxygen in a planar type of Ar/O 2 non-equilibrium atmospheric-pressure plasma jet[J]. Plasma Sources Science and Technology, 2014, 23(2): 0250042.
[94]  van Gessel A F H, van Grootel S C, Bruggeman P J. Atomic oxygen TALIF measurements in an atmospheric-pressure microwave plasma jet with in situ xenon calibration[J]. Plasma Sources Science and Technology, 2013, 22(5): 0550105.
[95]  Srivastava N, Wang C. Determination of oh radicals in an atmospheric pressure helium microwave plasma jet[J]. IEEE Transactions on Plasma Science, 2011, 39(3): 918-924.
[96]  Lee H W, Kang S K, Won I H, et al . Distinctive plume formation in atmospheric Ar and He plasmas in microwave frequency band and suitability for biomedical applications[J]. Physics of Plasmas, 2013, 20(12): 12350612.
[97]  卢新培,严 萍,任春生,等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学:物理学 力学 天文学,2011,41(7):801-815.
[98]  Oh J, Walsh J L, Bradley J W. Plasma bullet current measurements in a free-stream helium capillary jet[J]. Plasma Sources Science and Technology, 2012, 21(3): 0340203.
[99]  Karakas E, Akman M A, Laroussi M. The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements[J]. Plasma Sources Science and Technology, 2012, 21(3): 0340163.
[100]  Liu J H, Liu X Y, Hu K, et al. Plasma plume propagation characteristics of pulsed radio frequency plasma jet[J]. Applied Physics Letters, 2011, 98(15): 151502.
[101]  Le P, Li G, Wang S, et al . Characteristics of kilohertz-ignited, radio-frequency atmospheric-pressure dielectric barrier discharges in argon[J]. Applied Physics Letters, 2009, 95(20): 20150120.
[102]  Olszewski P, Wagenaars E, McKay K, et al . Measurement and control of the streamer head electric field in an atmospheric-pressure dielectric barrier plasma jet[J]. Plasma Sources Science and Technology, 2014, 23(1): 0150101.
[103]  Ostrikov K. Colloquium: reactive plasmas as a versatile nanofabrication tool[J]. Reviews of Modern Physics, 2005, 77(2): 489-511.
[104]  Kolacyak D, Ihde J, Merten C, et al . Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet[J]. Journal of Colloid and Interface Science, 2011, 359(1): 311-317.
[105]  Lin Y, Yang Y, Hsu C. Synthesis of niobium oxide nanowires using an atmospheric pressure plasma jet[J]. Thin Solid Films, 2011, 519(10): 3043-3049.
[106]  Ostrikov K, Neyts E C, Meyyappan M. Plasma nanoscience: from nano-solids in plasmas to nano-plasmas in solids[J]. Advances in Physics, 2013, 62(2): 113-224.
[107]  Mozetic M, Primc G, Vesel A, et al . Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials[J]. Plasma Sources Science and Technology, 2015, 24(1): 0150261.
[108]  Fridman G, Friedman G, Gutsol A, et al . Applied plasma medicine[J]. Plasma Processes and Polymers, 2008, 5(6): 503-533.
[109]  Laroussi M. Low temperature plasma-based sterilization: overview and state-of-the-art[J]. Plasma Processes and Polymers, 2005, 2(5): 391-400.
[110]  Laroussi M. Low-temperature plasmas for medicine[J]. IEEE Transactions on Plasma Science, 2009, 37(6): 714-725.
[111]  Diwan R, Debta F M, Deoghare A, et al . Plasma therapy: an overview[J]. Journal of Indian Academy of Oral Medicine and Radiology, 2011, 23: 120-123.
[112]  von Woedtke T, Reuter S, Masur K, et al . Plasmas for medicine[J]. Physics Reports, 2013, 530(4): 291-320.
[113]  卢新培. 等离子体射流及其医学应用[J]. 高电压技术, 2011, 37(6): 1416-1425. LU Xinpei. Plasma jets and their biomedical applications[J]. High Voltage Engineering, 2011, 37(6): 1416-1425.
[114]  Kong M G, Kroesen G, Morfill G, et al . Plasma medicine: an introductory review[J]. New Journal of Physics, 2009, 11: 115012.
[115]  Morfill G E, Kong M G, Zimmermann J L. Focus on plasma medicine[J]. New Journal of Physics, 2009, 11: 115011.
[116]  Neyts E C, Yusupov M, Verlackt C C, et al . Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine[J]. Journal of Physics D:Applied Physics, 2014, 47(29): 29300129.
[117]  Hoeft H, Kettlitz M, Becker M M, et al . Breakdown characteristics in pulsed-driven dielectric barrier discharges: influence of the pre-breakdown phase due to volume memory effects[J]. Journal of Physics D:Applied Physics, 2014, 47(46): 46520646.
[118]  Callegari T, Bernecker B, Boeuf J P. Pattern formation and dynamics of plasma filaments in dielectric barrier discharges[J]. Plasma Sources Science and Technology, 2014, 23(5): 0540035.
[119]  Wu S, Wang Z, Huang Q, et al . Dynamics of mode transition in air dielectric barrier discharge by controlling pressures[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2342-2343.
[120]  Massines F, Gherardi N, Naudé N, et al . Glow and Townsend dielectric barrier discharge in various atmosphere[J]. Plasma Physics and Controlled Fusion, 2005, 47(12B): B577-B588.
[121]  Choi J H, Lee T I, Han I, et al . Investigation of the transition between glow and streamer discharges in atmospheric air[J]. Plasma Sources Science and Technology, 2006, 15(3): 416-420.
[122]  Brandenburg R, Navrátil Z, Jánsky J, et al . The transition between different modes of barrier discharges at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2009, 42:85208.
[123]  王新新. 介质阻挡放电及其应用[J]. 高电压技术,2009,35(1):1-11. WANG Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 35(1): 1-11.
[124]  Lu X, Jiang Z, Xiong Q, et al . An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine[J]. Applied Physics Letters, 2008, 75(8): 81502.
[125]  Fridman G, Brooks A D, Balasubramanian M, et al . Comparison of direct and indirect effects of non-thermal atmospheric-pressure plasma on bacteria[J]. Plasma Processes and Polymers, 2007, 4(4): 370-375.
[126]  Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012, 21(3): 0340053.
[127]  Lu X, Wu S. On the active species concentrations of atmospheric pressure nonequilibrium plasma jets[J]. IEEE Transactions on Plasma Science, 2013, 41(8): 2313-2326.
[128]  Weltmann K D, Kindel E, von Woedtke T, et al . Atmospheric-pressure plasma sources: prospective tools for plasma medicine[J]. Pure and Applied Chemistry, 2010, 82(6): 1223-1237.
[129]  孔刚玉,刘定新. 气体等离子体与水溶液的相互作用研究—意义、挑战与新进展[J]. 高电压技术,2014,40(10):2956-2965. Michael G Kong, LIU Dingxin. Researches on the interaction between gas plasmas and aqueous solutions: significance, challenges and new progresses[J]. High Voltage Engineering, 2014, 40(10): 2956-2965.
[130]  Pei X, Wang Z, Huang Q, et al . Dynamics of a plasma jet array[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2276-2277.
[131]  Wu S, Wang Z, Huang Q, et al . Open-air direct current plasma jet: scaling up, uniformity, and cellular control[J]. Physics of Plasmas, 2012, 19(10): 103503.
[132]  Lu X, Jiang Z, Xiong Q, et al . A single electrode room-temperature plasma jet device for biomedical applications[J]. Applied Physics Letters, 2008, 75(15): 151504.
[133]  Xiong Q, Nikiforov A Y, Lu X P, et al . High-speed dispersed photographing of an open-air argon plasma plume by a grating-ICCD camera system[J]. Journal of Physics D: Applied Physics, 2010, 43(41): 415201.
[134]  Wu S, Lu X, Xiong Z, et al . A Touchable Pulsed Air Plasma Plume Driven by DC Power Supply[J]. IEEE Transactions on Plasma Science, 2010, 38(12): 3404-3408.
[135]  Baik K Y, Kang H L, Kim J, et al . Non-thermal plasma jet without electrical shock for biomedical applications[J]. Applied Physics Letters, 2013, 103(16): 164101.
[136]  Weltmann K D, Polak M, Masur K, et al . Plasma processes and plasma sources in medicine[J]. Contributions to Plasma Physics, 2012, 52(7):644-654.
[137]  Kim J Y, Wei Y, Li J, et al . Single-cell-level microplasma cancer therapy[J]. Small, 2011, 7(16): 2291-2295.
[138]  Andreas S, James Y J, et al . The atmospheric-pressure plasma jet: a review and comparison to other plasma sources[J]. IEEE Transactions on Plasma Science, 1998, 26(6): 1685-1694.
[139]  Bussiahn R, Brandenburg R, Weltmann K D, et al . The hairline plasma: an intermittent negative DC-corona discharge at atmospheric pressure for plasma medical applications[J]. Applied Physics Letters, 2010, 96(14): 143701.
[140]  Walsh J L, Kong M G. Portable nanosecond pulsed air plasma jet[J]. Applied Physics Letters, 2011, 99(8): 0815018.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133