全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

直流激励均匀氩气等离子体羽的脉冲特性

DOI: 10.13336/j.1003-6520.hve.2015.02.023, PP. 510-515

Keywords: 大气压放电,等离子体喷枪,等离子体羽,脉冲放电,脉冲频率,放电机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究大气压氩气等离子体羽的脉冲放电特性及其放电机理,以氩气为工作气体,在大气压空气环境中,利用直流激励的等离子体喷枪产生了圆锥形均匀的等离子体羽。等离子体羽长度随气流的增大而增大,但几乎不随两电极间维持电压的变化而变化。通过对两电极间维持电压、放电电流、放电发光信号的时间演化图分析,发现尽管维持电压是恒定的,放电电流和放电发光表现为周期性的脉冲。放电脉冲频率随维持电压的增大而增大,且随两电极间距离的增大而减小。对不同位置的发光信号时间演化进行研究,表明这种脉冲等离子体羽与常见的持续模式和子弹模式不同,其放电在不同的空间位置几乎是同时产生的,但是放电的熄灭却沿远离喷嘴的方向依次推迟。

References

[1]  Benmansour M, Nikravech M, Morvan D, et al . Diagnostic by emission spectroscopy of an argon-hydrogen RF inductive thermal plasma for purification of metallurgical grade silicon[J]. Journal of Physics D: Applied Physics, 2004, 37(21): 2966-2974.
[2]  Deng X T, Shi J J, Shama G, et al . Effects of microbial loading and sporulation temperature on atmospheric plasma inactivation of bacillus subtilis spores[J]. Applied Physics Letters, 2005, 87(15): 153901.
[3]  Dorai R, Kushner M. A model for plasma modification of polypropylene using atmospheric pressure discharges[J]. Journal of Physics D: Applied Physics, 2003, 36(6): 666-685.
[4]  Hopwood J, Iza F, Coy S, et al . A microfabricated atmospheric-pressure microplasma source operating in air[J]. Journal of Physics D: Applied Physics, 2005, 38(11): 1698-1703.
[5]  Chen Q, Zhang Y, Han E, et al . Atmospheric pressure DBD gun and its application in ink printability[J]. Plasma Sources Science and Technology, 2005, 14(4): 670-675.
[6]  刘 源,方 志,蔡玲玲. 增强聚丙烯薄膜表面经大气压氩等离子体射流改性后的亲水性[J]. 高电压技术,2012,38(5):1141-1149. LIU Yuan, FANG Zhi, CAI Linging. Improving hydrophilicity of polypropylene film using atmospheric pressure plasma jet in argon[J]. High Voltage Engineering, 2012, 38(5): 1141-1149.
[7]  Okazaki S, Kogoma M, Uehara M, et al . Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source[J]. Journal of Physics D: Applied Physics, 1993, 26(5): 889-892.
[8]  方 志,蔡玲玲,雷 枭. 氦气和氖气中大气压均匀介质阻挡放电特性比较[J]. 高电压技术,2011,37(7):1766-1774. FANG Zhi, CAI Lingling, LEI Xiao. Comparison of the discharge characteristics of homogeneous dielectric barrier discharge in He and Ne[J]. High Voltage Engineering, 2011, 37(7): 1766-1774.
[9]  Massines F, Rabehi A, Decomps P, et al . Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. Journal of Applied Physics, 1998, 83(6): 2950-2957.
[10]  罗海云,冉俊霞,王新新. 大气压不同惰性气体介质阻挡放电特性的比较[J]. 高电压技术,2012,38(5):1070-1077. LUO Haiyun, RAN Junxia, WANG Xinxin. Comparison study of dielectric barrier discharge in inert gases at atmospheric pressure[J]. High Voltage Engineering, 2012, 38(5): 1070-1077.
[11]  Schoenbach K H, Moselhy M, Shi A, et al . Microhollow cathode discharges[J]. Journal of Vacuum Science & Technology A, 2003, 21(4): 1260-1265.
[12]  Watanabe J, Ogino A, Nagatsu M. Characteristics of direct current microhollow cathode discharges combined with dielectric barrier discharges as preionizer[J]. Applied Physics Letters, 2007, 91(22): 221507.
[13]  Schutze A, Jeong J Y, Babayan S E, et al . The atmospheric-pressure plasma jet: a review and comparison to other plasma sources[J]. IEEE Transactions on Plasma Science, 1998, 26(6): 1685-1694.
[14]  Park J, Henins I, Herrmann H W, et al . An atmospheric pressure plasma source[J]. Applied Physics Letters, 2000, 76(3): 288-290.
[15]  李雪辰,鲍文婷,贾鹏英,等. 大气压刷形等离子体羽的放电特性[J]. 高电压技术,2014,40(1):166-172. LI Xuechen, BAO Wenting, JIA Pengying, et al . Discharge characteristics of a brush-shaped plasma plume under atmospheric pressure[J]. High Voltage Engineering, 2014, 40(1): 166-172.
[16]  Lu X, Laroussi M, Puech V. On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012, 21(3): 034005.
[17]  Li X C, Di C, Jia P Y, et al . Characteristics of an atmospheric-pressure argon plasma jet excited by a DC voltage[J]. Plasma Sources Science and Technology, 2013, 22(4): 045007.
[18]  Hofmann S, van Gessel A F H, Verreycken T, et al . Power dissipation, gas temperatures and electron densities of cold atmospheric pressure helium and argon RF plasma jets[J]. Plasma Sources Science and Technology, 2011, 20(6): 065010.
[19]  Tang J, Li S, Zhao W, et al . Development of a stable dielectric-barrier discharge enhanced laminar plasma jet generated at atmospheric pressure[J]. Applied Physics Letters, 2012, 100(25): 253505.
[20]  Walsh J L, Iza F, Janson N B, et al . Chaos in atmospheric-pressure plasma jets[J]. Plasma Sources Science and Technology, 2012, 21(3): 034008.
[21]  Deng X L, Nikiforov A Yu, Vanraes P, et al . Direct current plasma jet at atmospheric pressure operating in nitrogen and air[J]. Journal of Applied Physics, 2013, 113(2): 023305.
[22]  Yokoyama T, Hamada S, Ibuka S, et al . Atmospheric DC discharges with miniature gas flow as microplasma generation method[J]. Journal of Physics D: Applied Physics, 2005, 38(11): 1684-1689.
[23]  Teschke M, Kedzierski J, Finantu-Dinu E G, et al . High-speed photographs of a dielectric barrier atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 310-311.
[24]  Lu X, Laroussi M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. Journal of Applied Physics, 2006, 100(6): 063302.
[25]  Shi J, Zhong F, Zhang J. A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet[J]. Physics of Plasmas, 2008, 15(1): 013504.
[26]  Xian Y, Wu S, Wang Z, et al . Discharge dynamics and modes of an atmospheric pressure non-equilibrium air plasma jet[J]. Plasma Processes and Polymers, 2013, 10(4): 372-378.
[27]  Walsh J L, Iza F, Janson N B, et al . Three distinct modes in a cold atmospheric pressure plasma jet[J]. Journal of Physics D: Applied Physics, 2010, 43(7): 075201.
[28]  Hsu D D, Graves D B. Microhollow cathode discharge stability with flow and reaction[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 2898-2907.
[29]  Chabert P, Lazzaroni C, Rousseau A. A model for the self-pulsing regime of microhollow cathode discharges[J]. Journal of Applied Physics, 2010, 108(11): 113307.
[30]  Donko Z. Modelling of low-current self-generated oscillations in a hollow cathode discharge[J]. Journal of Physics D: Applied Physics, 1999, 32(14): 1657-1664.
[31]  Li X C, Zhao H, Jia P Y, et al . A large gap uniform discharge excited by a direct-current voltage at atmospheric pressure[J]. Applied Physics Letters, 2013, 102(22): 223501.
[32]  Li X C, Liu R, Jia P Y, et al . Self-pulsing discharge of a plasma brush operated in atmospheric-pressure argon[J]. Europhysics Letters, 2013, 102(5): 055003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133