全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

压敏陶瓷-硅橡胶复合材料的非线性压敏介电特性

DOI: 10.13336/j.1003-6520.hve.2015.02.013, PP. 446-452

Keywords: ZnO压敏陶瓷,硅橡胶,复合材料,非线性电导特性,非线性介电特性,介质损耗

Full-Text   Cite this paper   Add to My Lib

Abstract:

开展兼具非线性电导和介电特性的复合材料的理论基础和应用研究,有助于更有效、广泛地解决高电压等级电力系统绝缘设备或部件电场分布不均匀的难题。为此,制备了ZnO压敏陶瓷-硅橡胶复合材料并测量了其非线性压敏介电特性。结果表明制备的复合材料具有良好的分散性和非线性电导及介电特性;当ZnO压敏陶瓷填料体积分数>10%时,复合材料可以表现出明显的非线性介电特性,可以起到更显著的电场均匀作用;当ZnO压敏陶瓷填料体积分数>20%时,复合材料呈现出明显的非线性电导特性,电导非线性系数可以达到10以上,当电场强度超过压敏电压梯度时电导率可以提高100倍以上,而电场强度达到1.5倍压敏电压梯度时,可在对不均匀电场起抑制作用的同时,避免较大的损耗。

References

[1]  韩 轩,马永其. 高压交联电缆终端预制橡胶应力锥的研究进展[J]. 绝缘材料,2007,40(4):12-17. HAN Xuan, MA Yongqi. Research progress of prefabricated rubber stress cone used in high voltage cross- linking cable termination[J]. Insulating Materials, 2007, 40(4): 12-17.
[2]  Nelson P N, Hervig H C. High dielectric constant materials for primary voltage cable terminations[J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(11): 3211-3215.
[3]  黄兴溢,柯清泉,江平开,等. 颗粒填充聚合物高介电复合材料[J]. 高分子通报,2006(12):39-44. HUANG Xingyi, KE Qingquan, JIANG Pingkai, et al . Particle-filled polymer composites with high dielectric constant[J]. Chinese Polymer Bulletin, 2006(12): 39-44.
[4]  Virsberg L G, Ware P. A New Termination for underground distribution[J]. IEEE Transactions on Power Apparatus and Systems, 1967, 86(9): 1129-1135.
[5]  Thomas C, Lise D, Felix G. Nonlinear resistive electric field grading part 1:theory and simulation[J]. IEEE Electrical Insulation Magazine, 2010, 26(6): 47-59.
[6]  Strumpler R, Rhyner J, Greuter F, et al . Nonlinear dielectric composites[J]. Smart Materials and Structures, 1995, 4(3): 215-222.
[7]  Auckland D W, Rashid A, Tavernier K, et al . Stress relief by non-linear fillers in insulating solids[C]∥IEEE 1994 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena. Arlington, USA: IEEE, 1994: 310-315.
[8]  Donnelly K P, Varlow B R. Non-linear DC and AC conductivity in electrically insulating composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(4): 610-614.
[9]  Donzel L, Greuter F, Christen T. Nonlinear resistive electric field grading part 2: materials and applications[J]. IEEE Electrical Insulation Magazine, 2011, 27(2): 18-29.
[10]  Glatz-Reichenbach J, Meyer B, Strumpler R, et al . New low-voltage varistor composites[J]. Journal of Materials Science, 1996, 31(22): 5941-5944.
[11]  Dang Z M, Zheng Y, Xu H P. Fabrication and dielectric characterization of advanced BaTiO 3 /polyimide nanocomposite films with high thermal stability[J]. Advanced Functional Materials, 2008, 18(10): 1509-1517.
[12]  Hong J I, Schadler L S, Siegel R W, et al . Rescaled electrical properties of ZnO/low density polyethylene nanocomposites[J]. Applied Physics Letters, 2003, 82(12):1956-1958.
[13]  梁曦东,陈昌渔,周远翔. 高 电压工程[M]. 北京:清华大学出版社,2003:9-10. LIANG Xidong, CHEN Changyu, ZHOU Yuanxiang. High voltage engineering[M] . Beijing, China: Tsinghua University Press, 2003: 9-10.
[14]  司马文霞,施 健,袁 涛,等. 特高压复合绝缘子电场计算及基于神经网络遗传算法的均压环结构优化设计[J]. 高电压技术,2012,38(2):257-265. SIMA Wenxia, SHI Jian, YUAN Tao, et al . Electric field calculation of ultra high voltage composite insulator and optimization design of corona ring structure based on neural network and genetic algorithm[J]. High Voltage Engineering, 2012, 38(2): 257-265.
[15]  胡建林,吴 尧,肖代波,等. 特高压直流复合支柱绝缘子均压环的优化设计[J]. 高电压技术,2014,40(1):46-54. HU Jianlin, WU Yao, XIAO Daibo, et al . Optimization for grading rings of UHV DC composite post insulators[J]. High Voltage Engineering, 2014, 40(1): 46-54.
[16]  Strumpler R, Maidorn G, Rhyner J. Fast current limitation by conducting polymer composites[J]. Journal of Applied Physics, 1997, 10(81): 6786-6794.
[17]  Strumpler R, Glatz-Reichenbach J. Conducting polymer composites[J]. Journal of Electroceramics, 1999, 3(4): 329-346.
[18]  Krivda A, Greuter F, Palmqvist L, et al . Characterisation of electric stress control materials by DC conductivity and impulse measurements[C]∥Proceedings of the 8 th International Symposium on High Voltage Engineering. Yokohama, Japan: ISH, 2003: 402-405.
[19]  Strumpler R, Glatz-Reichenbach J. Microvaristors: functional fillers for novel electroceramic composites[J]. Journal of Electroceramics, 2004, 3(4): 739-744.
[20]  韩宝忠,郭文敏,李忠华. 碳化硅/硅橡胶复合材料的非线性电导特性[J]. 功能材料,2008,39(9):1490-1493. HAN Baozhong, GUO Wenmin, LI Zhonghua. Nonlinear conductivity properties of silicon carbind/silicon rubber composites[J]. Journal of Functional Materials, 2008, 39(9): 1490-1493.
[21]  郭文敏,韩宝忠,李忠华,等. 聚乙烯/碳化硅复合材料的非线性电导特性的研究[J]. 功能材料,2010,41(3):436-438. GUO Wenmin, HAN Baozhong, LI Zhonghua, et al . Study on nonlinear conductivity characteristic of polyethylene/carborundum composites[J]. Journal of Functional Materials, 2010, 41(3): 436-438.
[22]  杨娟娟,刘 英,曹晓珑. 非线性电介质改善应力控制型套管电场的模拟计算与试验分析[J]. 绝缘材料,2003(5):29-31. YANG Juanjuan, LIU Ying, CAO Xiaolong. Simulative calculation and test validation of the electric field round stress grading bushing optimized by nonlinear dielectric[J]. Insulating Materials, 2003(5): 29-31.
[23]  何金良,谢竟成,胡 军. 改善不均匀电场的非线性复合材料研究进展[J]. 高电压技术,2014,40(3):637-647. HE Jinliang, XIE Jingcheng, HU Jun. Progress of nonlinear polymer composites for improving nonuniform electrical fields[J]. High Voltage Engineering, 2014, 40(3): 637-647.
[24]  Argaut P, Luton M H. Dry terminations: applicability to EHV[C]∥Jicable’95 Fourth International Conference on Insulated Power Cables. [S.l.]: Jicable, 1995: 221-224.
[25]  谢竟成,胡 军,何金良,等. 非线性复合材料对不均匀电场的改善效果仿真分析[J]. 高电压技术,2014,40(3):741-750. XIE Jingcheng, HU Jun, HE Jinliang, et al . Simulation analyse of modification effect of nonlinear composites on nonuniform electrical fields[J]. High Voltage Engineering, 2014, 40(3): 741-750.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133