全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

沿面介质阻挡放电的低压电极配置方法

DOI: 10.13336/j.1003-6520.hve.2015.09.003, PP. 2844-2849

Keywords: 介质阻挡放电,沿面介质阻挡放电,等离子体,低压电极配置,电极间距,臭氧生成

Full-Text   Cite this paper   Add to My Lib

Abstract:

沿面介质阻挡放电等离子体在臭氧生成、化工合成、流动控制等领域有着广泛的应用前景,而电极的配置对沿面放电应用效果有着重要影响。为此在石英玻璃筒上制作沿面放电等离子体发生系统,考察不同低压电极配置方法对放电特性和臭氧生成的影响,以获得沿面放电等离子体低压电极结构配置方法。研究结果表明带式电极的放电特性与臭氧生成量好于传统的面式电极,带式电极结构中,同位电极结构与异位电极结构相比,异位电极结构下的放电功率大于同位电极,其中在异位电极结构中,在电极间距为6mm、放电电压为20kV、气体体积流量为1m3/h条件下,放电功率为6.5W,臭氧生成量为34.2μ;g/L,高于传统的面式电极结构下的臭氧生成量50%以上,且石英玻璃筒外低压电极侧同样存在等离子体反应,产生的活性物质的量约占管内生成量的26%。

References

[1]  王新新,李成榕. 大气压氮气介质阻挡均匀放电[J]. 高电压技术,2011,37(6):1405-1415. WANG Xinxin, LI Chengrong. Review of homogenous dielectric barrier discharge in nitrogen at atmospheric pressure[J]. High Voltage Engineering, 2011, 37(6): 1405-1415.
[2]  王新新. 介质阻挡放电及其应用[J]. 高电压技术,2009,35(1):1-11. WANG Xinxin. Dielectric barrier discharge and its applications[J]. High Voltage Engineering, 2009, 35(1): 1-11.
[3]  姜 慧,邵 涛,于 洋,等. 不同介质下纳秒脉冲介质阻挡放电特性对比[J]. 高电压技术,2011,37(6):1529-1535. JIANG Hui, SHAO Tao, YU Yang, et al . Comparison of the characteristics in nanosecond-pulsed dielectric barrier discharge using different dielectric materials[J]. High Voltage Engineering, 2011, 37(6): 1529-1535.
[4]  Pekárek S. Experimental study of surface dielectric barrier discharge in air and its ozone production[J]. Journal of Physics D: Applied Physics, 2012, 45(7): 075201.
[5]  李清泉,许光可,房新振,等. 沿面型介质阻挡放电的数值仿真计算[J]. 高电压技术,2012,38(7):1548-1555. LI Qingquan, XU Guangke, FANG Xinzhen, et al . Numerical simulation of surface dielectric barrier discharge[J]. High Voltage Engineering, 2012, 38(7): 1548-1555.
[6]  Kongmany S, Matsuura H, Furuta M, et al . Plasma application for detoxification of Jatropha phorbol esters[J]. Journal of Physics: Conference Series, 2013, 441(1): 012006.
[7]  Massines F, Gouda G. A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 1998, 31(24): 3411.
[8]  詹花茂,李成榕,许金豹,等. 用于材料表面处理的空气中的均匀介质阻挡放电[J]. 高电压技术,2008,34(3):508-511. ZHAN Huamao, LI Chengrong, XU Jinbao, et al . Homogeneous dielectric barrier discharge in air for surface treatment of materials[J]. High Voltage Engineering, 2008, 34(3): 508-511.
[9]  McAdams R. Prospects for non-thermal atmospheric plasmas for pollution abatement[J]. Journal of Physics D: Applied Physics, 2001, 34(18): 2810.
[10]  侯世英,曾 鹏,刘 坤,等. 单介质与双介质结构介质阻挡放电水处理性能的比较[J]. 高电压技术,2012,38(7):1562-1567. HOU Shiying, ZENG Peng, LIU Kun, et al . Comparison of water treatment performance employ dielectric barrier discharge in single and double dielectric structure[J]. High Voltage Engineering, 2012, 38(7): 1562-1567.
[11]  商克峰,鲁 娜,李 杰,等. 用气相沿面放电生成臭氧方式降解偶氮染料废水的影响因素分析[J]. 高电压技术,2012,38(7):1636-1641. SHANG Kefeng, LU Na, LI Jie, et al . Factor analysis of ozone generation by gas-phase surface discharge for degradation of azo dye wastewater[J]. High Voltage Engineering, 2012, 38(7): 1636-1641.
[12]  Malik M A, Minamitani Y, Schoenbach K H. Comparison of catalytic activity of aluminum oxide and silica gel for decomposition of volatile organic compounds (VOCs) in a plasmacatalytic reactor[J]. IEEE Transactions on Plasma Science, 2005, 33(1): 50-56.
[13]  Laroussi M. Low-temperature plasmas for medicine[J]. IEEE Transactions on Plasma Science, 2009, 37(6): 714-725.
[14]  卢新培. 等离子体射流及其医学应用[J]. 高电压技术,2011,37(6):1416-1425. LU Xinpei. Plasma jets and their biomedical application[J]. High Voltage Engineering, 2011, 37(6): 1416-1425.
[15]  Kuchenbecker M, Bibinov N, Kaemlimg A, et al . Characterization of DBD plasma source for biomedical applications[J]. Journal of Physics D: Applied Physics, 2009, 42(4): 045212.
[16]  Bayoda K D, Benard N, Moreau E. Nanosecond pulsed sliding dielectric barrier discharge plasma actuator for airflow control: Electrical, optical, and mechanical characteristics[J]. Journal of Applied Physics, 2015, 118, 063301.
[17]  Odic E, Dhainaut M, Petit M, et al . Approach of the physical and chemical specific properties of pulsed surface dielectric barrier discharges in air at atmospheric pressure[J]. Journal of Advanced Oxidation Technologies, 2003, 6(1): 41-47.
[18]  Ndong A C, Zouzou N, Benard N, et al . Geometrical optimization of a surface DBD powered by a nanosecond pulsed high voltage[J]. Journal of Electrostatics, 2013, 71(3): 246-253.
[19]  Hoskinson A R, Hershkowitz N. Differences between dielectric barrier discharge plasma actuators with cylindrical and rectangular exposed electrodes[J]. Journal of Physics D: Applied Physics, 2010, 43(6): 065205.
[20]  Enloe C L, McLaughlin T E, van Dyken R D, et al . Mechanisms and responses of a dielectric barrier plasma actuator: geometric effects[J]. AIAA Journal, 2004, 42(3): 595-604.
[21]  Forte M, Jolibois J, Pons J, et al . Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids, 2007, 43(6): 917-928.
[22]  Magureanu M, Mandache N B, Parvulescu V I, et al . Improved performance of non-thermal plasma reactor during decomposition of trichloroethylene: optimization of the reactor geometry and introduction of catalytic electrode[J]. Applied Catalysis B: Environmental, 2007, 74(3): 270-277.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133