全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

微空心阴极内氩等离子体特性的二维数值模拟

DOI: 10.13336/j.1003-6520.hve.2015.09.020, PP. 2965-2972

Keywords: 氩等离子体,微空心阴极,辉光放电,电势,非平衡,数值模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了描述微空心阴极内等离子体放电特性,采用二维流体模型对氩气微空心阴极放电进行了数值模拟。在工作气压,放电电流范围内,微空心阴极内氩气放电处于正常辉光放电区域,计算获得的微空心阴极伏安特性及各种组分数密度与文献报道结果符合良好。数值模拟结果表明,在典型计算工况条件下,微空心阴极环形鞘层内电子温度可达;气体温度可高出室温几百,说明微空心阴极内等离子体放电具有明显的气体加热效应。通过对体系内的化学动力学过程分析发现,在不同的区域内,的产生机理不同。在阴极孔鞘层区内,高能电子直接电离基态原子占主导;在阴极孔中心处,电子冲击激发态电离占主导;在阴极孔外的放电区域中心轴线上,的产生来自电子冲击激发态电离、Penning电离和电子直接冲击基态原子电离共同贡献。

References

[1]  White A D. New hollow cathode glow discharge[J]. Journal of Applied Physics, 1959, 30(5): 711-719.
[2]  Schoenbach K H, El-Habachi A, Shi W, et al . High-pressure hollow cathode discharges[J]. Plasma Sources Science and Technology, 1997, 6(4): 468-477.
[3]  Frame W, Wheeler D J, de Temple T A, et al . Microdischarge devices fabricated in silicon[J]. Applied Physics Letters, 1997, 71(9): 1165-1167.
[4]  Schoenbach K H, Verhappen R, Tessnow T, et al. Microhollow cathode discharges[J]. Applied Physics Letters, 1996, 68(1): 13-15.
[5]  Aubert X, Bauville G, Guillon J, et al . Analysis of the self-pulsing operating mode of a microdischarge[J]. Plasma Sources Science and Technology, 2007, 16(1): 23-32.
[6]  Hsu D D, Graves D B. Microhollow cathode discharge stability with flow and reaction[J]. Journal of Physics D: Applied Physics, 2003, 36(23): 2898-2907.
[7]  Boeuf J P, Pitchford L C, Schoenbach K H. Predicted properties of microhollow cathode discharges in xenon[J]. Applied Physics Letters, 2005, 86(7): 071501.
[8]  张晓宁,李和平,Murphy A B,等. 用于非平衡热等离子体数值模拟的物理数学模型[J]. 高电压技术,2013,39(7):1640-1648. ZHANG Xiaoning, LI Heping, Murphy A B, et al . Physical-mathematical model used for simulations of non-equilibrium thermal plasmas[J]. High Voltage Engineering, 2013, 39(7): 1640-1648.
[9]  孙维平,魏福智,王海兴. 10 kW级氢电弧加热发动机非平衡等离子体流动过程的数值模拟[J]. 高电压技术, 2013,39(7):1614-1620. SUN Weiping, WEI Fuzhi, WANG Haixing. Numerical simulation of nonequilibrium plasma flow in 10 kW hydrogen arcjets[J]. High Voltage Engineering, 2013, 39(7): 1614-1620.
[10]  Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 2005, 14(4): 722-733.
[11]  Deconinck T, Raja L L. Modeling of mode transition behavior in argon microhollow cathode discharges[J]. Plasma Processes and Polymers, 2009, 6(5): 335-346.
[12]  Phelps A V, Petrovic Z Lj. Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons[J]. Plasma Sources Science and Technology, 1999, 8(3): R21-R44.
[13]  Lay B, Moss R S, Rauf S, et al . Breakdown processes in metal halide lamps[J]. Plasma Sources Science and Technology, 2003, 12(1): 8-21.
[14]  Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Transactions on Electron Devices, 1969, 16(1): 64-77.
[15]  Kothnur P S, Raja L L. Two-dimensional simulation of a direct-current microhollow cathode discharge[J]. Journal of Applied Physics, 2005, 97(4): 043305.
[16]  Penache C, Miclea M, Brauning-Demian A, et al. Characterization of a high-pressure microdischarge using diode laser atomic absorption Spectroscopy[J]. Plasma Sources Science and Technology, 2002, 11(4): 476-483.
[17]  夏广庆,Sadeghi N. 光学发射光谱法测量氩气微空心阴极放电中特性参数[J]. 光谱学与光谱分析,2010,30(7):1952-1955. XIA Guangqing, Sadeghi N. Optical emission spectroscopy for the characteristic parameters measurement of argon microhollow cathode discharge[J]. Spectroscopy and Spectral Analysis, 2010, 30(7): 1952-1955.
[18]  Wang H X, Sun W P, Sun S R, et al . Two-temperature chemical-nonequilibrium modelling of a high-velocity argon plasma flow in a low-power arcjet thruster[J]. Plasma Chemistry and Plasma Processing, 2013, 34(3): 559-577.项目:国家自然科学基金(11072020;11275021)。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133