全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

空气辉光放电暂态空间电荷机理仿真分析与验证

DOI: 10.13336/j.1003-6520.hve.2015.09.014, PP. 2916-2924

Keywords: 空气辉光放电,等离子体,混合模型,数值计算,空间电荷,实验验证

Full-Text   Cite this paper   Add to My Lib

Abstract:

为研究空气辉光放电暂态空间电荷的产生机理,提出了基于流体-化学反应的空气放电2维混合数值模型,并采用仿真模拟及实验验证方法获取在空气放电过程中空间电荷的产生机理及空间动态分布。在模型中,空气放电粒子输运过程采用流体动力学模型处理;粒子之间的反应过程采用化学反应模型处理,共包括12种粒子和27种化学反应过程。通过仿真及实验数据发现,放电电压-电流特性、电子温度空间分布的仿真数据与实验测量数据相符。基于被验证的仿真模型发现,放电过程中N2的电子碰撞电离反应是电子产生的主要方式。N2+和O2+是放电过程中产生数密度最大的正离子,分别为1.1×;1015m-3、3×;1014m-3。N2+产生速率比O2+的产生速率快,分别为5.4×;1022m-3s-1、1.8×;1022m-3s-1,表明正离子和电子决定放电过程中等离子体的特性。随着放电时间延长,阴极的传导电流密度逐渐增加,但阳极的传导电流密度逐渐减少。提出的流体-化学混合模型可真实模拟空气辉光放电的暂态过程,对研究空气辉光放电的物理机理具有重要意义。

References

[1]  Sigmond R S. The residual streamer channel: return strokes and secondary streamers[J]. Journal of Applied Physics, 1984, 56(5): 1355-1370.
[2]  Mizuno A, Hori Y J. Destruction of living cells by pulsed high voltage application[J]. IEEE Transactions on Industry Applications, 1998, 24(3): 387-394.
[3]  Lieberman M A,Lichtenberg A J. 等离子体放电原理与材料处理[M]. 北京:科学出版社,2007:179-193. Lieberman M A, Lichtenberg A J. Plasma discharge principle and materials processing[M]. Beijing, China: Science Press, 2007: 179-193.
[4]  Nahomy J, Ferreira C M, Gordiets B, et al . Experimental and theoretical investigation of a N 2 -O 2 DC flowing glow discharge[J]. Journal of Physics D: Applied Physics, 1995, 28(4): 738-746.
[5]  廖瑞金,刘康淋,伍飞飞,等. 棒-板电极直流负电晕放电过程中重粒子特性的仿真研究[J]. 高电压技术,2014,40(4):965-971. LIAO Ruijin, LIU Kanglin, WU Feifei, et al . Simulative study on characteristic of heavy particles in negative bar-plate DC corona discharges[J]. High Voltage Engineering, 2014, 40(4): 965-971.
[6]  Gordiets B F, Ferreira C M, Guerra V L, et al . Kinetic model of a low-pressure N 2 -O 2 flowing glow discharge[J]. IEEE Transactions on Plasma Science, 1995, 23(4): 750-768.
[7]  Graves D B, Jensen K F. A continuum model of DC and RF discharges[J]. IEEE Transactions on Plasma Science, 1986, 14(2): 78-91.
[8]  Passchier J D P, Goedheer W J. Relaxation phenomena after laser-induced photo detachment in electronegative RF discharges[J]. Journal of Applied Physics, 1993, 73(3): 1073-1079.
[9]  Boeuf J P, Marode E. A Monte Carlo analysis of an electron swarm in a nonuniform field: the cathode region of a glow discharge in helium[J]. Journal of Physics D: Applied Physics, 1982, 15(11): 2169-2187.
[10]  彭庆军,司马文霞,杨 庆,等. 初始电子浓度对空气中针板间隙正极性流注放电的影响[J]. 高电压技术,2013,39(1):37-43. PENG Qingjun, SIMA Wenxia, YANG Qing, et al . Influence of initial electron concentration on positive streamer discharge in pin-plate air gap[J]. High Voltage Engineering, 2013, 39(1): 37-43.
[11]  宋 伟,申文伟,王国利,等. 电晕放电老化对高温硫化硅橡胶材料陷阱特性的影响[J]. 高电压技术,2013,39(4):979-986. SONG Wei, SHEN Wenwei, WANG Guoli, et al . Influence of corona discharge aging on trap characteristics of high temperature vulcanized silicon rubber material[J]. High Voltage Engineering, 2013, 39(4): 979-986.
[12]  Agostino R D, Favia P, Oehr C, et al . Low-temperature plasma processing of materials: past, present, and future[J]. Plasma Processes and Polymers, 2005, 2(1): 7-15.
[13]  Gordiets B F, Capitelli M, Ferreira C M, et al . Plasma kinetics in atmospheric gases[M]. Berlin, Germany: Springer Group, 2000: 36-46.
[14]  普子恒,阮江军,吴 田,等. 火焰中颗粒对间隙放电特性的影响[J]. 高电压技术,2014,40(1):103-110. PU Ziheng, RUAN Jiangjun, WU Tian, et al . Influence of particles in flame on the characteristics of gap discharge[J]. High Voltage Engineering, 2014, 40(1): 103-110.
[15]  PNeufeld P D, Janzen A R, Aziz R A. Empirical equations to calculate 16 of the transport collision integrals Ω (ls) for the Lennard-Jones(12-6) potential[J]. Journal of Chemical Physics, 1972, 57(3): 1100-1102.
[16]  Brokaw R S. Predicting transport properties of dilute gases[J]. Industrial Engineering Chemistry Process Design and Development, 1969, 8(2): 240-253.
[17]  Bird R B, Stewart W E, Lightfoot E N. Transport phenomena[M]. New York, USA: Wiley, 1960: 111-146.
[18]  Farouk T, Farouk B, Gutsol A, et al . Atmospheric pressure radio frequency glow discharges in argon: effects of external matching circuit parameters[J]. Plasma Sources Science and Technology, 2008, 17(3): 035015.
[19]  Curtiss C F, Bird R B. Multicomponent diffusion[J]. Industrial Engineering Chemistry Research, 1999, 38(7): 2515-2522.
[20]  李雪辰,赵欢欢,贾鹏英,等. 常压空气中大间隙介质阻挡放电特性[J]. 高电压技术,2013,39(4):876-882. LI Xuechen, ZHAO Huanhuan, JIA Pengying, et al . Characteristics of dielectric barrier discharge in large air gap at atmospheric pressure[J]. High Voltage Engineering, 2013, 39(4): 876-882.
[21]  蒋兴良,夏云峰,张志劲,等. 低气压下空气间隙电弧对覆冰绝缘子串直流闪络的影响[J]. 高电压技术,2013,38(1):670-676. JIANG Xingliang, XIA Yunfeng, ZHANG Zhijin, et al . Influence of arc Levitation on DC flashover performance of iced insulators under low air pressure[J]. High Voltage Engineering, 2013, 38(1): 670-676.
[22]  Lisovskiy V A, Yakovin S D. Experimental study of a low-pressure glow discharge in air in large-diameter discharge tubes: 1. conditions for the normal regime of a glow discharge[J]. Plasma Physics Reports, 2000, 26 (12): 1066-1075.
[23]  Wang Q, Economou D J, Donnelly V M. Simulation of a direct current microplasma discharge in helium at atmospheric pressure[J]. Journal of Applied Physics, 2006, 100(2): 023301.
[24]  Choi J, Iza F, Lee J K, et al . Electron and ion kinetics in a DC microplasma at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2007, 35(5): 1274-1278

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133