全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于端口供给能量的特高压电网扰动冲击传播机理分析

DOI: 10.13336/j.1003-6520.hve.2015.03.017, PP. 824-831

Keywords: 端口供给能量,Dirac结构,暂态能量函数,暂态稳定,特高压电网,电力系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对某些情况下互联电网边缘地区故障会导致特高压联络线功率振荡甚至失稳解列的现象,将电力系统描述为端口互联结构,引入端口供给能量概念分析系统中各端口之间的能量流动。基于端口供给能量的分配定义支路暂态能量概念,推导出端口供给能量分配与线路电抗成反比,支路暂态能量大小与联络线功率振幅成正比的规律。对华中华北互联电网的仿真验证了上述规律,并在此基础上解释了扰动冲击在电网中传播进而影响系统稳定性的机理由于发电和负荷比例悬殊,故障后产生的大量暂态能量难以就地耗散;又因为特高压联络线阻抗较小,暂态能量主要通过特高压联络线向周边区域转移,造成特高压联络线较其他超高压线路功率振荡幅度更大。仿真分析结果表明,利用所提出的端口供给能量方法能够清晰地阐述故障后系统中暂态能量的产生和流动过程以及特高压电网扰动冲击传播机理。

References

[1]  张 宁,刘静琨. 影响特高压电网运行的因素及应对策略[J]. 电力系统保护与控制,2013,41(1):109-114. ZHANG Ning, LIU Jingkun. The ultra high voltage grid risk analysis and its assessment framework[J]. Power System Protection and Control, 2013, 41(1): 109-114.
[2]  Van der Schaft A J, Dalsmo M, Maschke B M. Mathematical structures in the network representation of energy-conserving physical systems[C]∥Proceedings of the 35th Conference on Decision and Control. Kobe, Japan: [s.n.], 1996: 201-206.
[3]  Courant T J. Dirac manifolds[J]. Transactions of American Mathematical Society, 1990, 319(2): 631-661.
[4]  Batlle C, Massana I, Simo E. Representation of a general composition of Dirac structures[C]∥The 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FL, USA: IEEE, 2011: 5199-5204.
[5]  Jacobs H O, Yoshimura H. Interconnection and composition of Dirac structures for Lagrange-Dirac systems[C]∥The 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, FI, USA: IEEE, 2011: 928-933.
[6]  Van der Schaft A J, Maschke B M. Conservation laws and open systems on higher-dimensional networks[C]∥Proceedings of 47th IEEE Conference on Decision and Control. Cancum, Mexico: IEEE, 2008: 799-804.
[7]  Mascheke B, Ortega R, Schaft A J. Energy-based Lyapunov functions for forced hamiltonian systems with dispation[J]. IEEE Transactions on Automatic Control, 2000(5): 1498-1502.
[8]  Cervera J, Van der Schaft A J, Banos A. Interconnection of port-Hamiltonian systems and composition of Dirac structures[J]. Automatica, 2007, 43(2): 212-225.
[9]  李 颖,李嘉龙,王 一,等. 基于PCHS的电力系统振荡源定位方法[J]. 广东电力,2013(10):51-57. LI Ying, LI Jialong, WANG Yi, et al . Positioning method for oscillation source of power system based on port-controlled Hamiltonian system[J]. Guangdong Electric Power, 2013(10): 51-57.
[10]  郑 超,汤 涌,马世英,等. 振荡中心联络线大扰动轨迹特征及紧急控制策略[J]. 中国电机工程学报,2014,34(7):1079-1087. ZHENG Chao, TANG Yong, MA Shiying, et al . Large disturbed trajectory characteristic of tie-line located in the oscillation center and emergency control strategy[J]. Proceedings of the CSEE, 2014, 34(7): 1079-1087.
[11]  张文亮,周孝信,印永华,等. 华北—华中—华东特高压同步电网构建和安全性分析[J]. 中国电机工程学报,2010,30(16):1-5. ZHANG Wenliang, ZHOU Xiaoxin, YIN Yonghua, et al . Composition and security analysis of “North China-Central China-East China” UHV synchronous power grid[J]. Proceedings of the CSEE, 2010, 30(16): 1-5.
[12]  刘梦欣,徐 磊,杨 鹏. 特高压交流电网建成后华东电网的安全稳定性分析[J]. 高电压技术,2010,36(1):296-300. LIU Mengxin, XU Lei, YANG Peng. Analysis of the security and stability of east china power system after constructing UHV AC grid[J]. High Voltage Engineering, 2010, 36(1): 296-300.
[13]  邵文权,章霄微,宋江喜,等. 特高压交流输电线路单相重合闸无故障识别电压电流组合判据[J]. 高电压技术, 2013,39(3):546-554. SHAO Wenquan, ZHANG Xiaowei, SONG Jiangxi, et al . Non-fault identification voltage and current based integrated criterion for single-phase reclosure on UHVAC transmission lines[J]. High Voltage Engineering, 2013, 39(3):546-554.
[14]  郑 彬,项祖涛,班连庚,等. 特高压交流输电线路加装串联补偿装置后断路器开断暂态恢复电压特性分析[J]. 高电压技术,2013,39(3):605-611. ZHENG Bin, XIANG Zutao, BAN Liangeng, et al . Analysis on circuit breaker transient recovery voltage UHV AC transmission lines fixed with series capacitors[J]. High Voltage Engineering, 2013, 39(3): 605-611.
[15]  梁涵卿,邬 雄,梁旭明. 特高压交流和高压直流输电系统运行损耗及经济性分析[J]. 高电压技术,2013,39(3):630-635. LIANG Hanqing, WU Xiong, LIANG Xuming. Operation losses and economic evaluation of UHVAC and HVDC transmission systems[J]. High Voltage Engineering, 2013, 39(3):630-635.
[16]  董飞飞,刘涤尘,吴 军,等. 基于多重约束的“三华”特高压电网功率交换极限评估[J]. 高电压技术,2013,39(7):1798-1804. DONG Feifei, LIU Dichen, WU Jun, et al . Evaluation on exchanged power limit of ‘Sanhua’ UHV power grid based on multiple constraints[J]. High Voltage Engineering, 2013, 39(7):1798-1804.
[17]  汤 涌,孙华东,易 俊,等. 两大区互联系统交流联络线功率波动机制与峰值计算[J]. 中国电机工程学报,2010,30(19):1-6. TANG Yong, SUN Huadong, YI Jun, et al . AC tie-line power fluctuation mechanism and peak value calculation for two-area interconnected power systems[J]. Proceedings of the CSEE, 2010, 30(19): 1-6.
[18]  陈 乾, 沈 沉,汤 蕾. 基于轨迹特征根的扰动冲击机理探索[J]. 电网技术,2014,38(9):2461-2465. CHEN Qian, SHEN Chen, TANG Lei. Study on the mechanism of disturbance impact on power system transient stability based on trajectory eigenvalues[J]. Power System Technology, 2014, 38(9): 2461-2465.
[19]  刘 巨,孙海顺,文劲宇,等. 交流互联电网中大扰动对联络线的冲击特性分析方法[J]. 电力系统自动化,2013,37(21):17-22. LIU Ju, SUN Haishun, WEN Jinyu, et al . A method for analyzing large disturbance impact characteristics on tie-line in AC interconnected power grid[J]. Automation of Electric Power Systems, 2013, 37(21): 17-22.
[20]  Li Y,Shen C,Liu F. An energy-based methodology for locating the source of forced oscillations in power systems[C]∥IEEE International Conference on Power System Technology. Auckland, New Zealand, IEEE, 2012: 1-6.
[21]  李 颖,沈 沉,刘 锋. 基于能量结构的电力系统振荡分析方法[J]. 电力系统自动化,2013,37(13):49-56. LI Ying, SHEN Chen, LIU Feng. A methodology for power system oscillation analysis based on energy structure[J]. Automation of Electric Power Systems, 2013, 37(13): 49-56.
[22]  李 颖,沈 沉,刘 锋. 基于Hamilton实现的电力系统振荡源设备级定位[J]. 电力系统自动化,2012,36(23):6-11. LI Ying, SHEN Chen, LIU Feng. Oscillation source location in control devices of generators based on Hamiltonian realization[J]. Automation of Electric Power Systems, 2012, 36(23): 6-11.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133