唐 炬,林俊亦,卓 然,等. 基于支持向量数据描述的局部放电类型识别[J]. 高电压技术,2013,39(5):1046-1053. TANG Ju, LIN Junyi, ZHUO Ran, et al . Partial discharge type recognition based on support vector data description[J]. High Voltage Engineering, 2013, 39(5): 1046-1053.
[2]
吴 琼,杨以涵,刘文颖. 基于最小二乘支持向量机的电力系统暂态稳定在线预测[J]. 中国电机工程学报,2007,27(25):39-43. WU Qiong, YANG Yihan, LIU Wenying. Electric power system transient stability on-line prediction based on least squares support vector machine[J]. Proceedings of the CSEE, 2007, 27(25): 39-43.
[3]
刘艳芳,顾雪平. 基于支持向量机的电力系统暂态稳定分类研究[J]. 华北电力大学学报,2004,31(3):26-30. LIU Yanfang, GU Xueping. Transient stability assessment of power systems based on support vector machines[J]. Journal of North China Electric Power University, 2004, 31(3): 26-30.
[4]
李大虎,江全元,曹一家. 基于聚类的支持向量回归模型在电力系统暂态稳定预测中的应用[J]. 电工技术学报,2006,7(7):75-80. LI Dahu, JIANG Quanyuan, CAO Yijia. Clustering based on support vector regression model and its application in power system transient stability prediction[J]. Transactions of China Electrotechnical Society, 2006, 7(7): 75-80.
[5]
叶圣永,王晓茹,刘志刚,等. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报,2010,30(31):28-34. YE Shengyong, WANG Xiaoru, LIU Zhigang, et al . Dual-stage feature selection for transient stability assessment based on support vector machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34.
[6]
吴 为,汤 涌,孙华东,等. 基于广域量测信息的电力系统暂态稳定研究综述[J]. 电网技术,2012,36(9):81-87. WU Wei, TANG Yong, SUN Huadong, et al . A survey on research of power system transient stability based on wide-area measurement information[J]. Power System Technology, 2012, 36(9): 81-87.
[7]
叶圣永,王晓茹,刘志刚,等. 电力系统暂态稳定概率评估方法[J]. 电网技术,2009,33(6):19-23. YE Shengyong, WANG Xiaoru, LIU Zhigang, et al . Approach to assess power system transient stability probability[J]. Power System Technology, 2009, 33(6): 19-23.
[8]
Liu C W, Thorp J. Application of synchronized phasor measurements to real-time transient stability prediction[J]. IEE Proceedings Generation, Transmission and Distribution, 2005, 142(4): 355-360.
[9]
刘劲风,王述洋. WAMS在电力系统分析和控制中应用的新进展[J]. 高电压技术,2007,33(7):182-185. LIU Jinfeng, WANG Shuyang. Survey on applications of wide-area measurement system in power system analysis[J]. High Voltage Engineering, 2007, 33(7): 182-185.
[10]
刘新东,江全元,曹一家. 基于功角受扰轨迹拟合的暂态稳定快速预测[J]. 电力系统自动化,2008,32(19):5-9. LIU Xindong, JIANG Quanyuan, CAO Yijia. A novel fast transient stability prediction method based on perturbed trajectories fitting of rotor angle[J]. Automation of Electric Power Systems, 2008, 32(19): 5-9.
[11]
管 霖,曹绍杰. 基于人工智能的大系统分层在线暂态稳定评估[J]. 电力系统自动化,2000,24(2):22-26. GUANG Lin, Tso S K. Combination of heuristic reasoning and ANN to realize on-line transient stability assessment in large scale power systems[J]. Automation of Electric Power Systems, 2000, 24(2): 22-26.
[12]
于之虹,郭志忠. 基于数据挖掘理论的电力系统暂态稳定评估[J]. 电力系统自动化,2003,27(8):45-48. YU Zhihong, GUO Zhizhong. A novel approach for transient stability assessment based on data mining theory[J]. Automation of Electric Power Systems, 2003, 27(8): 45-48.
[13]
马 骞,杨以涵,刘文颖,等. 多输入特征融合的组合支持向量机电力系统暂态稳定评估[J]. 中国电机工程学报,2005,25(6):17-23. MA Qian, YANG Yihan, LIU Wenying, et al . Power system transient stability assessment with combined SVM method mixing multiple input features[J]. Proceedings of the CSEE, 2005, 25(6): 17-23.
[14]
许 涛,贺仁睦,王 鹏,等. 基于统计学习理论的电力系统暂态稳定评估[J]. 中国电机工程学报,2003,23(11):51-55. XU Tao, HE Renmu, WANG Peng, et al . Power system transient stability assessment based on statistical learning theory[J]. Proceedings of the CSEE, 2003, 23(11): 51-55.
[15]
Krishna S, Padiyar K R. Transient stability assessment using artificial neural networks[J]. Proceedings of IEEE International Conference on Industrial Technology, 2000, 1: 627-632.
[16]
Bahbah A G, Girgis A A. New method for generators’ angles and angular velocities prediction for transient stability assessment of multimachine power systems using recurrent artificial neural network[J]. IEEE Transactions on Power Systems, 2004, 19(2): 1015-1022.
[17]
叶圣永,王晓茹,刘志刚,等. 基于支持向量机增量学习的电力系统暂态稳定评估[J]. 电力系统自动化,2011,35(11):15-19. YE Shengyong, WANG Xiaoru, LIU Zhigang, et al . Power system transient stability assessment based on support vector machine incremental learning method[J]. Automation of Electric Power Systems, 2011, 35(11): 15-19.
[18]
Chow J H, Chakrabortty A, Arcak M, et al . Synchronized phasor data based energy function analsis of dominant power transfer paths in large power systems[J]. IEEE Transactions on Power Systems, 2007, 22(2): 727-734.
[19]
叶圣永. 基于机器学习的电力系统暂态稳定评估研究[D]. 成都:西南交通大学,2010:17-37,56-63. YE Shengyong. Study on power systems transient stability assessment based on machine learning method[D]. Chengdu, China: Southwest Jiaotong University, 2010: 17-37, 56-63.
[20]
郑含博,王 伟,李晓纲,等. 基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J]. 高电压技术,2014,40(11):3424-3429. ZHENG Hanbo, WANG Wei, LI Xiaogang, et al . Fault diagnosis method of power transformers using multi-class LS-SVM and improved PSO[J]. High Voltage Engineering, 2014, 40(11): 3424-3429.
[21]
戴 栋,黄筱婷,代 洲,等. 基于支持向量机的输电线路覆冰回归模型[J]. 高电压技术,2013,39(11):2822-2828. DAI Dong, HUANG Xiaoting, DAI Zhou, et al . Regression model for transmission lines icing based on support vector machine[J]. High Voltage Engineering, 2013, 39(11): 2822-2828.
[22]
Rajapakse D, Gomez F, Nanayakkara K. Rotor angle instability prediction using post disturbance voltage trajectories[J]. IEEE Transactions on Power Systems, 2010, 25(2): 947-956.
[23]
Francisco R. Gomez, Athula D. Rajapakse. Support vector mchine based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1474-1483.
[24]
TONY Cheng-Kui Huang. Knowledge gathering of fuzzy multi-time-interval sequential patterns[J]. Information Sciences, 2010, 17(180): 3316-3334.
[25]
Kira K, Rendell L. A practical approach to feature selection[C]∥Proceedings of the 9 th International Workshop on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann, 1992: 249-256.
[26]
李运坤,吕飞鹏,蒋 科,等. 基于最短电气距离的运行方式组合方法[J]. 电力系统保护与控制,2010,38(15):24-27,37 LI Yunkun, LÜ Feipeng, JIANG Ke, et al . Method for power system operation mode combination based on shortest electrical distance[J]. Power System Protection and Control, 2010, 38(15): 24-27, 37.