全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

特/超高压直流输电系统单极运行下变压器中性点直流电流分布规律仿真分析

DOI: 10.13336/j.1003-6520.hve.2015.03.012, PP. 787-793

Keywords: 高压直流,单极运行,直流偏磁,中性点直流电流,网络化建模,电流分布

Full-Text   Cite this paper   Add to My Lib

Abstract:

为揭示直流系统运行方式与变压器直流偏磁现象之间的内在联系,基于宜昌电网的实际参数和PSCAD/EMTDC电磁暂态仿真平台,采用交流系统网络化建模的方法,建立了包含宜昌电网两条500kV直流输电线路以及接地极临近区域220kV交流变压器的直流偏磁电流分布仿真模型。对给定工况下变压器中性点直流电流的分布情况进行了仿真,并与现场实测的数据进行了对比验证,还分别对单接地极场景以及双接地极场景时各个特征变电站主变中性点直流电流分布情况进行仿真,揭示了变压器中性点电位差是决定其直流电流分布特征的根本原因。结果表明所建立模型的误差在10%以下,具备复现系统实际运行情况的能力。分析结果能够为从系统运行角度抑制直流偏磁提供理论依据。

References

[1]  陈三运. 葛-南直流输电系统单极运行对宜昌电网影响情况的分析[J]. 湖北电力,2007,31(6):33-36. CHEN Sanyun. Analysis of the influence about monopole operation of Ge-Nan HVDC on Yichang power grid[J]. Hubei Electric Power, 2007, 31(6): 33-36.
[2]  续建国. 直流输电与交流电网变压器偏磁问题研究[D]. 成都:西南交通大学,2011:1-4. XU Jianguo. Study on DC transmission and AC grid transformer DC bias[D]. Chengdu, China: Southwest Jiao Tong University, 2011: 1-4.
[3]  陆海清. 特高压直流输电单极大地运行对交流电网的影响研究[D]. 杭州:浙江大学,2013:1-4. LU Haiqing. Research on the effect on AC system by mono-polar operation of UHVDC system[D]. Hangzhou, China: Zhejiang University, 2013: 1-4.
[4]  段 旭. 直流偏磁下变压器振动机理与振动信号分析研究[D]. 重庆:重庆大学,2013:1-6. DUAN Xu. Research on transformer vibration mechanism and signal analysis under DC bias[D]. Chongqing, China: Chongqing University, 2013:1-6.
[5]  赵志刚,刘福贵,程志光,等. HVDC直流偏磁电力变压器铜屏蔽中涡流损耗分析与仿真[J]. 高电压技术,2011,37(4):990-996. ZHAO Zhigang, LIU Fugui, CHENG Zhiguang, et al. . Eddy-current loss of copper shielding under DC-biased condition in HVDC[J]. High Voltage Engineering, 2011, 37(4): 990-996.
[6]  李 贞,李庆明,李长云,等. 直流偏磁条件下变压器的谐波畸变特征[J]. 电力系统保护与控制,2010,38(24):52-55. LI Zhen, LI Qingmin, LI Changyun, et al. Harmonic distortion feature of AC transformers caused by DC bias[J]. Power Systems Protection and Control, 2010, 38(24): 52-55.
[7]  任志超. 直流系统接地极电流场的分布特性及其对交流电网影响的研究[D]. 成都:西南交通大学,2012:1-8. REN Zhichao. Distribution characteristics of DC system grounding electrode current field and its effect on AC power grid[D]. Chengdu, China: Southwest Jiao Tong University, 2012: 1-8.
[8]  龚文强,徐 亮,周 科,等. 直流换流站接地极对变压器中性点电流的影响[J]. 广东电力,2011,24(4):19-24. GONG Wenqiang, XU Liang, ZHOU Ke, et al. Impact of earth electrode of DC inversion station on transformer neutral points[J]. Guangdong Electric Power, 2011, 24(4): 19-24.
[9]  Lahtinen M, Elovaara J. GIC occurrences and GIC test for 400 kV system transformer[J]. IEEE Transactions on Power Delivery, 2002, 17(2): 555-561.
[10]  Bozoki B, Chano S R, Dvorak L L, et al. The effects of GIC on protective relaying[J]. IEEE Transactions on Power Delivery, 1996, 11(2): 725-739.
[11]  张 玓. 直流偏磁下变压器运行特性研究[D]. 沈阳:沈阳工业大学,2013:1-5. ZHANG Di. Analysis of operating characteristics of transformer under DC bias[D]. Shenyang, China: Shenyang University of Technology, 2013: 1-5.
[12]  李泓志,崔 翔,刘东升,等. 大型电力变压器直流偏磁分析的磁路建模与应用[J]. 高电压技术,2010,36(4):1068-1076. LI Hongzhi, CUI Xiang, LIU Dongsheng, et al. Magnetic circuit modeling of the DC biased large power transformer and the application[J]. High Voltage Engineering, 2010, 36(4): 1068-1076.
[13]  刘渝根,冷 迪,田 资,等. 基于ANSYS Maxwell的750 kV自耦变压器直流偏磁仿真[J]. 高电压技术,2013,39(1):218-226. LIU Yugen, LENG Di, TIAN Zi, et al . DC bias simulation of 750 kV autotranformer based on ANSYS maxell[J]. High Voltage Engineering, 2013, 39(1): 218-226.
[14]  王大庆,贲洪奇,孟 涛. 基于死区调节的单级桥式PFC变换器变压器偏磁抑制策略[J]. 中国电机工程学报,2012,32(30):46-54. WANG Daqing, BEN Hongqi, MENG Tao . A flux DC bias suppression scheme of single-stage full-bridge PFC converters based on dead zone adjustment[J]. Proceedings of the CSEE, 2012, 32(30): 46-54.
[15]  李长云,李庆民,李 贞. 半岛地质条件下计算高压直流输电地中直流分布的扩展镜像法[J].高电压技术,2011,37(2):444-453. LI Changyun, LI Qingmin, LI Zhen . Extended image method to determine the underground DC current distribution of HVDC transmission systems under peninsula geological conditions[J]. High Voltage Engineering, 2011, 37(2): 444-453.
[16]  汪发明,张 露,全江涛,等. 交流电网直流电流分布仿真软件的开发[J]. 高电压技术,2012,38(11):3054-3059. WANG Faming, ZHANG Lu, QUAN Jiangtao, et al . Software development for DC current distribution in AC power grid[J]. High Voltage Engineering, 2012, 38(11): 3054-3059.
[17]  龚 泉,殷敏莉,苏 磊. 长三角地区变压器直流偏磁的评估及抑制[J]. 华东电力,2011,39(9):1467-1471. GONG Quan, YIN Minli, SU Lei . Evaluation and restraining measures of DC bias impact on transformer in Yangtze river delta area[J]. East China Electric Power, 2011, 39(9): 1467-1471.
[18]  Bolduc L, Granger M, Pare P, et al. Development of a DC current-blocking device for transformer neutrals[J]. IEEE Transactions on Power Delivery, 2005, 20(1): 163-168.
[19]  佟 昕. HVDC输电引起变压器直流偏磁分析及抑制措施[D]. 吉林:东北电力大学,2014:1-6. TONG Xin. Analysis and restraining measures of DC bias impact on transformer caused by HVDC transmission[D]. Jilin, China: Northeast Dianli University, 2014: 1-6.
[20]  张 露,阮 羚,潘卓洪,等. 变压器直流偏磁抑制设备的应用分析[J]. 电力自动化设备,2013,33(9):151-156. ZHANG Lu, RUAN Ling, PAN Zhuohong, et al. Evaluation of DC bias restraint equipment application[J]. Electric Power Automation Equipment, 2013, 33(9): 151-156.
[21]  王振浩,佟 昕,齐伟夫. 电容隔直可控开断桥法抑制变压器直流偏磁[J]. 电工技术学报,2013,28(10):120-125. WANG Zhenhao, TONG Xin, QI Weifu . Blocking DC capacitor controllable opening and broken bridge suppression in transformer DC magnetic bias[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 120-125.
[22]  邱 璆,吴广宁,任志超,等. 变压器中性点串小电阻抑制直流偏磁的研究[J]. 华东电力,2012,40(5):8-12. QIU Qiu, WU Guangning, REN Zhichao, et al. Transformer neutral series low resistance designed against DC magnetic bias[J]. East China Electric Power, 2012, 40(5): 8-12.
[23]  李长云,李庆民,李 贞,等. 基于双重保护拓扑的变压器直流偏磁抑制措施[J]. 电力自动化设备,2012,32(1):69-72. LI Changyun, LI Qingmin, LI Zhen, et al. Measures of transformer DC bias suppression based on dual protection topology[J]. Electric Power Automation Equipment, 2012, 32(1): 69-72.
[24]  马志强,黎小林,钟定珠. 直流输电大地电流对交流系统影响的网络分析算法[J]. 广东电力,2005,17(2):5-9. MA Zhiqiang, LI Xiaolin, ZHONG Dingzhu. Network algorithm to analyze effects of DC transmission ground current on AC system[J]. Guangdong Electric Power, 2005, 17(2): 5-9.
[25]  魏 畅. 直流接地极电流场的直流通路网络建模计算与分析[D]. 上海:上海交通大学,2008:4-20. WEI Chang. Modeling calculation and analysis of the DC circulating network of the current field generated from DC electrode[D]. Shanghai, China: Shanghai Jiao Tong University, 2008: 4-20.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133