全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于时域有限差分网格生成改进算法的混响室简便计算方法

DOI: 10.13336/j.1003-6520.hve.2015.03.047, PP. 1049-1056

Keywords: 混响室,时域有限差分方法,网格剖分,数值仿真,KS检验,P值

Full-Text   Cite this paper   Add to My Lib

Abstract:

为解决时域有限差分(FDTD)方法中零厚度平面的剖分问题,实现对有损混响室的快速简便数值计算,提出了一种基于三角面元的FDTD网格剖分改进算法,并将混响室的缝隙泄露、趋肤效应等导致的损耗等效为混响室内空间介质损耗,将混响室内搅拌器与腔体壁均等价为无厚度的理想电导体,结合FDTD网格剖分算法建立有损混响室简便模型,采用三维旋转矩阵实现搅拌器的步进。从混响室的储能和统计均匀特性着手,对仿真和实测得到的归一化场强和品质因数进行对比,并采用Kolmogorov-Smirnov(KS)检验的方法考察仿真结果、实测结果与其相应的理论值的归一化电场强度累积分布函数(CDF)曲线拟合度,检验结果均接受了原假设,且大部分P值均高于0.5,验证了所建简化混响室模型的正确性。

References

[1]  Moglie F, Primiani V M. Reverberation chambers: Full 3d fdtd simulations and measurements of independent positions of the stirrers[C]∥IEEE International Symposium on Electromagnetic Compatibility. Long Beach, USA: IEEE, 2011: 226-230.
[2]  El Haffar M, Reineix A, Guiffaut C, et al . Reverberation chamber modeling using the fdtd method[C]∥International Conference on Advances in Computational Tools for Engineering Applications. Zouk Mosbeh, Lebanon: [s.n.], 2009: 151-156.
[3]  王 松,武占成,崔耀中,等. 混响室时域有限差分数值模型的快速计算方法[J]. 高电压技术,2013,39(3):682-688. WANG Song, WU Zhancheng, CUI Yaozhong, et al . Fast computation method for numerical model in FDTD of reverberation chamber[J]. High Voltage Engneering, 2013, 39(3): 682-688.
[4]  Bonnet P, Vernet R, Girard S, et al . Fdtd modelling of reverberation chamber[J]. Electronics Letters, 2005, 41(20): 1101-1102.
[5]  Srisukh Y, Nehrbass J, Teixeira F, et al . An approach for automatic grid generation in three-dimensional FDTD simulations of complex geometries[J]. IEEE Antennas and Propagation Magazine, 2002, 44(4): 75-80.
[6]  胡晓娟,葛德彪,魏 兵,等. 基于目标三角面元模型生成fdtd共形网格的方法[J]. 强激光与粒子束,2007,19(8):1333-1337. HU Xiaojuan, GE Debiao, WEI Bing, et al . Conformal FDTD mesh-generating technique for objects with triangle-patch model[J]. High Power Laser and Particle Beams, 2007, 19(8): 1333-1337.
[7]  Waldschmidt G, Taflove A. Three-dimensional cad-based mesh generator for the dey-mittra conformal fdtd algorithm[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(7): 1658-1664.
[8]  Dey S, Mittra R. A locally conformal finite-difference time-domain (fdtd) algorithm for modeling three-dimensional perfectly conducting objects[J]. IEEE Microwave and Guided Wave Letters, 1997, 7(9): 273-275.
[9]  Jurgens T G, Taflove A. Three-dimensional contour fdtd modeling of scattering from single and multiple bodies[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(12): 1703-1708.
[10]  Moglie F. Convergence of the reverberation chambers to the equilibrium analyzed with the finite-difference time-domain algorithm[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 469-476.
[11]  刘逸飞,陈永光,王庆国,等. 频率搅拌混响室场均匀性与搅拌带宽选取方法分析[J]. 高电压技术,2012,38(9):2354-2359. LIU Yifei, CHEN Yongguang, WANG Qingguo, et al . Analysis of field uniformity and stirring bandwidth in frequency stiring reverberation chamber[J]. High Voltage Engneering, 2012, 38(9): 2354-2359.
[12]  Mengue S, Richalot E, Picon O. Comparison between different criteria for evaluating reverberation chamber functioning using a 3d FDTD algorithm[J]. IEEE Transactions on Electromagnetic Compatibility, 2008, 50(2): 237-245.
[13]  Lemoine C, Besnier P, Drissi M. Investigation of reverberation chamber measurements through high-power goodness-of-fit tests[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(4): 745-755.
[14]  Elsherbeni A Z, Demir V. The finite difference time domain method for electromagnetics with matlab simulations[M]. New Jersey, USA: SciTech Pub, 2009: 34-81.
[15]  周 香. 混波室设计及其在电磁兼容测试中的应用[D]. 南京:东南大学,2005:13-15. ZHOU Xiang. The design of reverberation chamber and the application in EMC test[D]. Nanjing,China: Southeast University, 2005: 13-15.
[16]  Cui Y, Wei G, Wang S, et al . Fast calculation of reverberation chamber q-factor[J]. Electronics Letters, 2012, 48(18): 1116-1117.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133