全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

模型参数估计法计算地下地返回导体参数频率特性

DOI: 10.13336/j.1003-6520.hve.2015.03.044, PP. 1028-1033

Keywords: 模型参数估计,接地导体,参数计算,频域推进,时域模型,传输线模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

在地下地返回导体参数计算中,为降低优化算法对初值选择的依赖性和提高收敛速度,基于模型参数估计(MBPE),提出了基于频域参数逐步外推概念构造初始值的方法。以Sunde公式为基础,对隐函数形式的导体参数计算公式采用非线性优化方法求解,利用已计算的参数值推出下一个频率的近似解作为优化问题初始值,根据所得初值计算不同大地电导率接地导体参数,分析冲击电流激励下接地导体暂态响应。结果表明,当大地电导率为0.1S/m、0.01S/m和0.001S/m时,土壤的分布电导均远远大于其分布电容,因此,冲击电流作用下,对于实际土壤参数,接地导体时域传输线模型中可不考虑对地电容的作用。应用MBPE方法可以避免计算导体参数时初值选择的盲目性,从而提高了计算效率并保证了算法的收敛性。

References

[1]  Akbari M, Sheshyekani, Alemi M R. The effect of frequency dependence of soil electrical parameters on the lightning performance of grounding systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(4): 739-746.
[2]  Theodoulidis T. Exact solution of Pollaczek’s integral for evaluation of earth-return impedance for underground conductors[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(4): 806-814.
[3]  左 鹏,魏 冲,邹 军,等. 不等间距布置导体的接地网优化设计[J]. 高电压技术,2011,37(9):2315-2320. ZUO Peng, WEI Chong, ZOU Jun, et al . Optimal design of grounding grid in which conductor unequally spaced[J]. High Voltage Engineering, 2011, 37(9): 2315-2320.
[4]  熊久良,武占成,孙永卫,等. 能量型电磁干扰下无线电引信辐照效应试验方法[J].高电压技术,2014,40(9):2783-2790. XIONG Jiuliang, WU Zhancheng, SUN Yongwei, et al . Experimental method of radio fuze radiation effect under energy-type electromagnetic interference[J]. High Voltage Engineering, 2014, 40(9): 2783-2790.
[5]  张 义,黄松波,王建国,等. 运行变电站接地网接地阻抗计算分析[J]. 高电压技术,2013,39(2):457-463. ZHANG Yi, HUANG Songbo, WANG Jianguo, et al . Analysis of grounding impedance computation for grounding grid of substation in operation[J]. High Voltage Engineering, 2013, 39(2): 457-463.
[6]  郭 卫,文习山,谭 进,等. 应用快速多极子边界元法的接地网接地参数计算方法[J]. 电网技术,2013,37(3):753-758. GUO Wei, WEN Xishan, TAN Jin, et al . Numerical calculation of grounding parameters of grounding grid by fast multipole boundary method[J]. Power System Technology, 2013, 37(3): 753-758.
[7]  李景丽,袁 涛,杨 庆,等. 考虑土壤电离动态过程的接地体有限元模型[J]. 中国电机工程学报,2011,31(22):149-157. LI Jingli, YUAN Tao, YANG Qing, et al . Finite element model of grounding system considering soil dynamic ionization[J]. Proceedings of the CSEE, 2011, 31(22): 149-157.
[8]  李景丽,袁 涛,杨 庆,等. 考虑土壤非线性的接地网有限元分析[J]. 高电压技术,2011,37(1):249-256. LI Jingli, YUAN Tao, YANG Qing, et al . Analysis of grounding grid by finite element method in consideration of soil nonlinear characteristics[J]. High Voltage Engineering, 2011, 37(1): 249-256.
[9]  Grcev L. Modeling of grounding electrodes under lightning currents[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(3): 559-568.
[10]  Grcev L, Grceva S. Comparison between exact and quasi-static methods for HF analysis of horizontal buried wires[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(4): 1051-1059.
[11]  Arnautovski T V, Grcev, L. Image and exact models of a vertical wire penetrating a two-layered earth[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(4): 968-976.
[12]  Grcev L, Markovski B, Grceva, S. On inductance of buried horizontal bare conductors[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(4): 1083-1087.
[13]  Cavka D, Mora N, Rachidi F. A comparison of frequency-dependent soil models: application to the analysis of grounding systems[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(1): 177-187.
[14]  Sheshyekani K, Akbari M. Evaluation of lightning-induced voltages on multiconductor overhead lines located above a lossy dispersive ground[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 683-690.
[15]  Akbari M, Sheshyekani K, Pirayesh, et al . Evaluation of lightning electromagnetic fields and their induced voltages on overhead lines considering the frequency dependence of soil electrical parameters[J]. IEEE Transactions on Electromagnetic Compatibility, 2013, 55(6): 1210-1219.
[16]  Alipio R, Visacro S. Impulse efficiency of grounding electrodes: effect of frequency-dependent soil parameters[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 716-723
[17]  YANG Lin, WU Guangning, CAO Xiaobin. An optimized transmission line model of grounding electrodes under lightning currents[J]. Science China-technological Sciences, 2013, 56(2): 335-341.
[18]  Grcev L. Lightning surge efficiency of grounding grids[J]. IEEE Transactions on Power Delivery, 2011, 26(3): 1692-1699.
[19]  吴广宁,李天鸷,曹晓斌,等. 铁路贯通地线雷击瞬态土壤散流及电位分布的计算[J]. 高电压技术,2013,39(4):951-956. WU Guangning, LI Tianzhi, CAO Xiaobin, et al . Calculation of transient leakage current and potential distribution in soil around railwayconnecting ground wire under lightning[J]. High Voltage Engineering, 2013, 39(4): 951-956.
[20]  吴广宁,黄 渤,曹晓斌,等. 高速铁路路基段综合接地系统雷电冲击特性[J]. 高电压技术,2014,40(3):669-675. WU Guangning, HUANG Bo, CAO Xiaobin, et al . Lightning impulse characteristic of integrated grounding system of high-speed railway roadbed section[J]. High Voltage Engineering, 2014, 40(3): 669-675.
[21]  何金良,孔维政,张 波. 考虑火花放电的杆塔冲击接地特性计算方法[J]. 高电压技术,2010,36(9):2107-2111. HE Jinliang, KONG Weizheng, ZHANG Bo. Calculating method of impulse characteristics of tower grounding devices considering soil ionization[J]. High Voltage Engineering, 2010, 36(9):2107-2111.
[22]  边 凯,陈维江,沈海滨,等. 配电线路架设地线对雷电感应过电压的防护效果[J]. 高电压技术,2013,39(4):993-999. BIAN Kai, CHEN Weijiang, SHEN Haibin, et al . Protective effect of erection ground wire on distribution line to lightning induced overvoltage[J]. High Voltage Engineering, 2013, 39(4): 993-999.
[23]  Myers J M, Sandler S S, Wu T T. Electromagnetic resonances of a straight wire[J]. IEEE Transactions on Antennas Propagation, 2011, 59(1): 1129-1134.
[24]  Grcev L, Markovski B, Grceva, S. On inductance of buried horizontal bare conductors[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(4): 1083-1087.
[25]  Sunde E D. Earth conduction effects in transmission system[M]. 2nd ed. New York, USA: Dover Publications, 1968: 198-211.
[26]  Tesche F M, Ianoz M V, Karlsson T. EMC analysis methods and computational models[M]. New York, USA: John Wiley & Sons, Inc, 1997: 56-58.
[27]  Murat A, Novruz. Development a new mutation operator to solve the traveling salesman problem by aid of genetic algorithms[J]. Expert Systems with Applications, 2011, 38(3): 1313-1320.
[28]  Ren A, Wang Y, Jia F. A hybrid estimation of distribution algorithm and nelder-mead simplex method for solving a class of nonlinear bilevel programming problems[J]. Journal of Applied Mathematics, 2013, 34(8): 1-10
[29]  Li Y, Liu J, Liu C. A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks[J]. Soft Computing, 2014, 18(2): 329-348.
[30]  Chang T S, Wan Y W. A stochastic dynamic traveling salesman problem with hard time windows[J]. European Journal of Operation Research, 2009, 3(1): 748-759.
[31]  Ziauddin U, Daryl E, David C, et al . Localized genetic algorithm for vehicle routing problem with time windows[J]. Applied Soft Computing, 2011, 11(8): 5375-5390.
[32]  Zhang Y J, Huang D C, Chen J G. Combination of asymptotic phase basis functions and matrix interpolation method for fast analysis of monostatic RCS[J]. Applied Computational Electromagnetics Society Journal, 2013, 28(1): 49-56.
[33]  Liu Z W, Li M, Zhang G Z. Fast broadband analysis of microstrip by interpolating both impedance and preconditioning matrices with MBPE[J]. Microwave and Optical Technology Letters, 2011, 53(8): 1808-1811.
[34]  Press W H, Flannery B P, Teukolsky S A. Numerical recipes: the art of scientific computing[M]. New York, USA: Cambridge Univ. Press, 1986: 337-345.
[35]  LIU Y Q, Zitnik M, Thottappillil R. An improved transmission-line model of grounding system[J]. IEEE Transactions on Electromagnetic Compatibility, 2001, 43(3): 348-355.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133