全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于支持向量机的电力系统临界割集暂态稳定可用传输容量快速预测

DOI: 10.13336/j.1003-6520.hve.2015.03.014, PP. 800-806

Keywords: 电力系统,暂态稳定裕度,暂态稳定可用传输容量,支持向量机,临界割集,广域测量系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的稳定裕度在转化为电力系统控制措施时比较困难,针对这一不足,提出了基于临界割集暂态稳定可用传输容量(TATC)的暂态稳定裕度表征方法。在此基础上,为了实现TATC的在线快速计算,进一步提出了基于支持向量机(SVM)的TATC快速预测模型。IEEE10机39节点仿真结果表明,相对于临界切除时间,TATC能够从控制的角度对系统的暂态稳定裕度进行更加细致的划分,便于电网运行人员根据TATC结果快速制定出有针对性的预防控制和紧急控制措施。同时,所提TATC预测模型,在200个样本规模下的预测准确率在97%以上,并且随着样本规模的增加,模型预测准确率有着进一步的提升空间,具有良好的在线应用前景。

References

[1]  兰 洲,倪以信,甘德强. 现代电力系统暂态稳定控制研究综述[J]. 电网技术,2005,29(15):40-50. LAN Zhou, NI Yixin, GAN Deqiang. A survey on transient stability control of modern power systems[J]. Power System Technology, 29(15): 40-50.
[2]  付 媛,王 毅,张祥宇,等. 基于多端直流联网的风电功率协调控制[J]. 高电压技术,2014,40(1):611-619. FU Yuan, WANG Yi, ZHANG Xiangyu, et al . Coordinated control of wind power in multi-terminal DC transmission system[J]. High Voltage Engineering, 2014, 40(1): 611-619.
[3]  张 巍,向铁元,陈红坤,等. 基于嵌套多目标粒子群算法的多类型柔性交流输电系统优化配置[J]. 高电压技术,2014,40(5):1590-1598. ZHANG Wei, XIANG Tieyuan, CHEN Hongkun, et al . Multi-type flexible AC transmission system optimization placement based on nesting multi-objective particle swarm optimization algorithm[J]. High Voltage Engineering, 2014, 40(5): 1590-1598.
[4]  郭郓闻,张建设,胡 云,等. 大容量分布式STATCOM对南方电网交直流系统影响的实时仿真研究[J]. 高电压技术,2014,40(8):2586-2594. GUO Yunwen, ZHANG Jianshe, HU Yun, et al . Real-time simulation analysis of the impacts of distributed large-capacity STATCOM on AC/DC parallel system in China Southern Power Grid[J]. High Voltage Engineering, 2014, 40(8): 2586-2594.
[5]  刘 笙,汪 静. 电力系统暂态稳定的能量函数分析[M]. 上海:上海交通大学出版社,1996:5-15. LIU Sheng, WANG Jing. Power system transient stability analysis of the energy function[M]. Shanghai, China: Shanghai Jiao Tong University Press, 1966: 5-15.
[6]  Ando R, Iwamoto S. Highly reliable transient stability solution method using energy function[J]. Electrical Engineering in Japan, 1988, 108(4): 57-66.
[7]  Xue Y, Van Cutsem Th, Pavell Ma. Extended equal area criterion justification, generalizations, applications[J]. IEEE Transactions on Power Systems, 1989, 4(1): 44-52.
[8]  Rahimi F A, Lauby M G, Wrubel J N, et al . Evaluation of the transient energy function method for on-line dynamic security analysis[J]. IEEE Transactions on Power Systems, 1993, 8(2): 497-507.
[9]  Hsiao D C, Wu F F, Varaiya P P. A BCU method for direct analysis of power system transient stability[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1194-1208.
[10]  Maria G A, Tang C, Kim J. Hybrid transient stability analysis[J]. IEEE Transactions on Power Systems, 1990, 5(2): 384-393.
[11]  Moulin L S, Da Silva A P A, El-Sharkawi M A, et al . Support vector machines for transient stability analysis of large-scale power systems[J]. IEEE Transactions on Power Systems, 2004, 19(2): 818-825.
[12]  许 涛,贺仁睦,王 鹏,等.基于统计学习理论的电力系统暂态稳定评估[J]. 中国电机工程学报,2003,23(11):51-55. XU Tao, HE Renmu, WANG Peng, et al . Power system transient stability assessment based on statistical learning theory[J]. Proceedings of the CSEE, 2003, 23(11): 51-55.
[13]  Gomez F R, Rajapakse A D, Annakkage U D, et al . Support vector machine-based algorithm for post-fault transient stability status prediction using synchronized measurements[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1474-1483.
[14]  吴 琼,杨以涵,刘文颖. 基于最小二乘支持向量机的电力系统暂态稳定在线预测[J]. 中国电机工程学报,2007,27(25):38-43. WU Qiong, YANG Yihan, LIU Wenying. Electric power system transient stability on-line prediction based on least squares sup port vector machine[J]. Proceedings of the CSEE, 2007, 27(25): 38-43.
[15]  叶圣永,王晓茹,刘志刚,等. 基于支持向量机的暂态稳定评估双阶段特征选择[J]. 中国电机工程学报,2010,30(31):28-34. YE Shengyong, WANG Xiaoru, LIU Zhigang, et al . Dual-stage feature selection for transient stability assessment based on support vector machine[J]. Proceedings of the CSEE, 2010, 30(31): 28-34.
[16]  叶圣永,王晓茹,刘志刚,等. 基于受扰严重机组特征及机器学习方法的电力系统暂态稳定评估[J]. 中国电机工程学报,2011,31(1):46-51. YE Shengyong, WANG Xiaoru, LIU Zhigang, et al . Power system transient stability assessment based on severely disturbed generator attributes and machine learning method[J]. Proceedings of the CSEE, 2011, 31(1): 46-51.
[17]  王 科,游大海,尹项根,等. 基于支路势能脊的电力系统暂态 稳定分析和临界割集识别[J]. 电工技术学学报,2013,28(11):262-269. WANG Ke, YOU Dahai, YIN Xianggen, et al . Power system transient stability analysis and critical cutset detection based on branch ridge[J]. Transactions of China Electrotechnical Society, 2013, 28(11): 262-269.
[18]  Kalyani S, Swarup K S. Classification and assessment of power system security using multiclass SVM[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 2011, 41(5): 753-758.
[19]  Karami A. Power system transient stability margin estimation using neural networks[J]. International Journal of Electrical Power & Energy Systems, 2011, 33(4): 983-991.
[20]  Haidar A M A, Mustafa M W, Ibrahim F A F, et al . Transient stability evaluation of electrical power system using generalized regression neural networks[J]. Applied Soft Computing, 2011, 11(4): 3558-3570.
[21]  Lü J Q, Pawlak M, Annakkage U D. Prediction of the transient stability boundary using the lasso[J]. IEEE Transactions on Power Systems, 2013, 28(1): 281-288.
[22]  郑含博,王 伟,李晓纲,等. 基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J]. 高电压技术,2014,40(5):3424-3429. ZHENG Hanbo, WANG Wei, LI Xiaogang, et al . Fault diagnosis method of power transformers using multi-class LS-SVM and improved PSO[J]. High Voltage Engineering, 2014, 40(5): 3424-3429.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133