全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

皮秒脉冲细胞实验装置的设计与仿真优化

DOI: 10.13336/j.1003-6520.hve.2015.04.039, PP. 1365-1371

Keywords: ps脉冲,电极池,失真,托针,极板厚度,电场均匀度

Full-Text   Cite this paper   Add to My Lib

Abstract:

为在相同ps脉冲源输出电压下获得更高的电场强度以进行细胞实验,基于已有研究成果,设计了ps脉冲细胞实验装置,给出了信号不失真传输措施;并采用有限元法和CST建立了细胞实验装置的3维模型,综合考虑ps脉冲信号不失真传输、电场强度足够大以及电场均匀度良好3个重要指标后,对托针和电极池的相关参数进行了仿真优化。结果表明采用所设计的实验装置传输电磁波时,其反射波幅值较小,并能产生强度较大的电场;托针直径对电极池中的电场分布具有影响,宽托针产生的电场更加均匀、反射波幅值更小;电极池中电场均匀度随极板厚度的减小先增大后减小。根据仿真结果,当托针直径取5mm、极板厚度在0.66~0.70mm之间时,电极池中的电场强度足够大且均匀度较好。

References

[1]  Schoenbach K H, Hargrave B. Bioelectric effects of intense nanosecond pulses[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1088-1109.
[2]  姚陈果,郭 飞,董守龙. 纳秒脉冲处理A375细胞裸鼠皮下移植瘤的疗效评估[J]. 高电压技术,2013,39(1):117-121. YAO Chenguo, GUO Fei, DONG Shoulong. Treatment effect assessment of A375 cell subcutaneous transplantable tumor in nude mouse with nanosecond pulsed electric fields[J]. High Voltage Engineering, 2013, 39(1): 117-121.
[3]  李成祥,郭 飞,姚陈果. 裸鼠皮下人恶性黑色素瘤在纳秒脉冲电场下的凋亡机制[J]. 高电压技术,2013,39(4):890-895. LI Chengxiang, GUO Fei, YAO Chenguo. Apoptotic mechanism of human melanoma on nude mouse[J]. High Voltage Engineering, 2013, 39(4): 890-895.
[4]  姚陈果,郭 飞,王 建,等. 纳秒脉冲电场治疗裸鼠皮下人恶性黑色素瘤模型的长期效应[J]. 高电压技术,2012,38(12):3357-3362. YAO Chenguo, GUO Fei, WANG Jian, et al . Long-term effects of nanosecond pulsed electric field on nude mouse model with human melanoma[J]. High Voltage Engineering, 2012, 38(12): 3357-3362.
[5]  Xiao S, Altunc S, Kumar P, et al . A reflector antenna for focusing in the near field[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9(1): 12-15.
[6]  Xiao S, Guo S Q. Subnanosecond electric pulses cause membrane permeabilization and cell death[J].IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1239-1245.
[7]  郭 飞,姚陈果,刘泽辉,等. 采用冲激脉冲辐射天线实现ps脉冲电场生物组织聚焦的仿真分析[J]. 高电压技术,2013,39(1):175-180. GUO Fei, YAO Chenguo, LIU Zehui, et al . Simulation analysis of focusing picosecond pulsed electric fields into biological tissue with impulse radiating antanna[J]. High Voltage Engineering, 2013, 39(1): 175-180.
[8]  郭 飞,姚陈果,章锡明,等. 高强度ps脉冲电场诱导HeLa细胞生物电效应分析[J]. 高电压技术,2012,38(12):3381-3386. GUO Fei, YAO Chenguo, ZHANG Ximing, et al . Effects of intense picosecond pulsed electric field on hela cells[J]. High Voltage Engineering, 2012, 38(12): 3381-3386.
[9]  Xiao S, Pakhomov A, Guo F. Neurostimulation using subnanosecond electric pulses[C]∥Conference on Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications. San Francisco, USA: Spie-int Soc Optical Engineering, 2013: 1-6.
[10]  Krishnaswamy P, Kuthi A, Vernier P T.Compact subnanosecond pulse generator using avalanche transistors for cell electroperturbation studies[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 871-877.
[11]  赵东阳. 一种生物医用皮秒级高压脉冲发生器的研制[D]. 重庆:重庆大学,2010:1-10. ZHAO Dongyang. Research and development of a high-voltage picosecond pulse generator for biological applications[D]. Chongqing, China: Chongqing University, 2010: 1-10.
[12]  Bluhm H. 脉冲功率系统的原理与应用[M]. 北京:清华大学出版社,2008:110. Bluhm H. Pulsed power systems: principles and applications[M]. Beijing, China: Tsinghua University, 2008: 110.
[13]  Camp T. Synergistic effect of subnanosecond pulsed electric fields and temperature on the viability of biological cells[D]. Norfolk, USA: Old Dominion University, 2012: 1-19.
[14]  Crawford M L. Generation of standard EM fields using TEM transmission cells[J]. IEEE Transactions on Electromagnetic Compatibility, 1974, 16(4): 189-195.
[15]  Malaric K, Bartolic J. Design of a TEM-cell with increased usable test area[J]. Turkish Journal of Electrical Engineering, 2003, 11(2): 143-154.
[16]  Heeren T, Camp J T. 250 kV Sub-nanosecond pulse generator with adjustable pulse-width[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 884-888.
[17]  Schoenbach K H, Xiao S, Joshi R P. The effect of intense subnanosecond electrical pulses on biological cells[J]. IEEE Transactions on Plasma Science, 2008, 36(2):414-422.
[18]  Camp J T, Jing Y, Zhuang J. Cell death induced by subnanosecond pulsed electric fields at elevated temperatures[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2334-2347.
[19]  Nah J B. Subnanosecond exposure systems for biological studies[D]. Norfolk, USA: Old Dominion University, 2012: 29-50.
[20]  Leus V, Elata D. Fringing field effect in electrostatic actuators[R]. Haifa, Israel: Israel Institute of Technology, 2004: 1-15.
[21]  Chang W H. Analytical IC metal-line capacitance formulas[J]. IEEE Transactions on Microwave Theory and Technique, 1976, 24(9): 608-611.
[22]  Bao M H. Micromechanical transducers-pressure sensors, accelerometer and gyroscopes[M]. New York, USA: Amsterdam Publisher, 2001: 144-145.
[23]  刘 佳,高璞珍,田瑞峰. 电容式湿度传感器结构优化[J]. 应用技术,2009,36(6):42-44. LIU Jia, GAO Puzhen, TIAN Ruifeng. Structuraloptimization of capacitive humidity sensor[J]. Applied Science and Technology, 2009, 36(6): 42-44.
[24]  陆 晶. 新型电容传感器的研究与应用[D]. 天津:河北工业大学,2002:8-12. LU Jing. Research of new type capacitance sensor and its application[D]. Tianjin, China: Hebei University of Technology, 2002: 8-12.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133