全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压电力电缆护层电流在线监测及故障诊断技术

DOI: 10.13336/j.1003-6520.hve.2015.04.017, PP. 1194-1203

Keywords: 高压电力电缆,状态监测,护层电流,仿真计算,故障分析,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过监测护层电流可及早发现高压电力电缆线路的潜在故障,有效避免非计划性停电。为此,提出了1种可用于诊断故障与非故障情况下3相交叉互联高压电力电缆中护层电流的研究方案。通过建立数学模型详细分析了2种典型的电缆故障,并基于1条线路长度为1.5km、电压等级为110kV的隧道电缆的仿真计算,提出了1套适用于12种电缆故障的诊断及定位标准。仿真分析结果显示当电缆接地系统中存在开路故障时,故障回路中的护层电流会降低;而当电缆交叉互联箱进水或电缆接头内环氧预制件击穿时,故障护层回路中将产生高于正常水平的护层电流值。基于故障仿真,所提出的故障诊断标准可准确识别并定位指定的3种电缆故障接头松动导致护层开路、交叉互联箱进水和接头内环氧预制件击穿。仿真表明地电阻的大幅度变化会导致诊断标准发生变化。

References

[1]  Barber K W, Marazzto H. Reliable undergrounding of electricity supply in Asia[C]∥Asia Pacific Conference on MV Power Cable Technologies. Kuala Lumpur, Malaysia: [s.n.], 2005: 1-5.
[2]  Hartlein R. Diagnostic testing of underground cable systems (cable diagnostic focused initiative): Neetrac Project No. 04-211/04-212/09-166[R]. [S.l.]: [s.n.], 2010.
[3]  Densley J. An overview of aging mechanisms and diagnostics for extruded power cables[C]∥IEEE Power Engineering Society Winter Meeting: Vol 3. Singapore: IEEE, 2000: 1587-1592.
[4]  Bertling L, Eriksson R, Allan R N, et al . Survey of causes of failures based on statistics and practice for improvements of preventive maintenance plans[C]∥14 th Power Systems Computation Conference. Seville, Spain: PSCC, 2002: 1-7.
[5]  靖小平,彭小圣,姜 伟,等. 基于K-means聚类算法的自动图谱识别在电缆局部放电在线监测系统中的应用[J]. 高电压技术,2012,38(9):2437-2446. JING Xiaoping, PENG Xiaosheng, JIANG Wei, et al . Phase resolved partial discharge pattern recognition method for on-line cable condition monitoring system based on K-means clustering[J]. High Voltage Engineering, 2012, 38(9): 2437-2446.
[6]  Nowlen S P, Wyant F J, Dandini V J. Circuit analysis: failure mode and likelihood analysis[M]. Rockville, USA: US Nuclear Regulatory Commission, 2003.
[7]  陈向荣,徐 阳,王 猛,等. 高温下110 kV交联聚乙烯电缆电树枝生长及局部放电特性[J]. 高电压技术,2012,38(3):645-654. CHEN Xiangrong, XU Yang, WANG Meng, et al . Propagation and partial discharge characteristics of electrical trees in 110 kV XLPE cable insulation at high temperature[J]. High Voltage Engineering, 2012, 38(3): 645-654.
[8]  杜伯学,马宗乐,高 宇,等. 采用温差法的10 kV交联聚乙烯电缆水树老化评估[J]. 高电压技术,2011,37(1):143-149. DU Boxue, MA Zongle, GAO Yu, et al . Insulation evaluation of water-tree aged 10 kV XLPE cables using thermal step method [J]. High Voltage Engineering, 2011, 37(1): 143-149.
[9]  王金锋,李彦雄,刘志民,等. 温度对聚乙烯水树枝老化特性的影响[J]. 高电压技术,2012,38(1):181-187. WANG Jinfeng, LI Yanxiong, LIU Zhimin, et al . Influence of temperature on water treeing in polyethylene[J]. High Voltage Engineering, 2012, 38(1):181-187.
[10]  Alsharif M, Wallace P, Hepburn D, et al .FEM modelling of electric field and potential distributions of MV XLPE cables containing void defect[C]//COMSOL Conference User Presentations. Milan, Italy: [s.n.], 2012:1-4.
[11]  Khan A A, Malik N, Al-Arainy A, et al . A review of condition monitoring of underground power cables[C]∥2012 IEEE International Conference on Condition Monitoring and Diagnosis. Bali, Indonesia: IEEE, 2012: 909-912.
[12]  Villaran M, Lofaro R.Condition monitoring of cables task 3 report: condition monitoring techniques for electric cables: BNL-90735-2009-IR [R].New York, USA: Energy Sciences and Technology Department, Brookhaven National Laboratory, 2009.
[13]  杜伯学,李忠磊,张 锴,等. 220 kV交联聚乙烯电力电缆接地电流的计算与应用[J]. 高电压技术,2013,39(5):1034-1039. DU Boxue, LI Zhonglei, ZHANG Kai, et al . Calculation and application of 220 kV crosslinked polyethylene power cable grounding current[J]. High Voltage Engineering, 2013, 39(5): 1034-1039.
[14]  DL/T 5221—2005 城市电力电缆线路设计技术规定[S],2005. DL/T 5221—2005 Technical design of power cable system in cities[S], 2005.
[15]  Rhodes D J, Wright A. Induced voltages in the sheaths of cross-bonded AC cables[J]. Proceedings of the Institution of Electrical Engineers, 1966, 113(1): 99-110.
[16]  Li Z L, Du B X, Wang L, et al . The calculation of circulating current for the single-core cables in smart grid[C]∥Innovative Smart Grid Technologies—Asia (ISGT Asia). Tianjin, China: IEEE, 2012: 1-4.
[17]  Jung C K, Lee J B, Kang J W, et al . Sheath current characteristic and its reduction on underground power cable systems[C]∥IEEE Power Engineering Society General Meeting: Vol 3. [S.l.]: IEEE, 2005: 2562-2569.
[18]  Jung C K, Lee J B, Kang J W. Sheath circulating current analysis of a cross-bonded power cable systems[J]. Journal of Electrical Engineering &Technology, 2007, 2(3): 320-328.
[19]  Ruiz J R R, Morera X A. Effects of the circulating sheath currents in the magnetic field generated by an underground power line[C]∥ICREPQ’2006. Palma de Mallorca: [s.n.], 2006: 1-5.
[20]  Yan L, Peng F D, Chen X L, et al . Study on sheath circulating current of cross-linked power cables[C]∥2008 IEEE International Conference on High Voltage Engineering and Application. Chongqing, China: IEEE, 2008: 645-648.
[21]  江守和,满忠雷,周保华,等. 新版GB 4706.1中“泄漏电流”测试浅析[J]. 上海标准化,2007(7):23-24. JIANG Shouhe, MAN Zhonglei, ZHOU Baohua, et al . Analysis of leakage current test in GB 4706.1 (new version)[J]. Shanghai Standardization, 2007(7): 23-24.
[22]  Cardimona S. Electrical resistivity techniques for subsurface investigation[R]. Rolla, USA: Department of Geology and Geophysics, University of Missouri-Rolla, 2002.
[23]  Saad R, Nawawi M N M, Mohamad E T. Groundwater detection in alluvium using 2D electrical resistivity tomography (ERT)[J]. Electronic Journal of Geotechnical Engineering, 2012, 17: 369-376.
[24]  IEEE Std 142™—2007 IEEE recommended practice for grounding of industrial and commercial power systems[S], 2007.
[25]  荣根旺,宋海清. 电缆隧道中间接头室的应用及推广[J]. 冶金动力,2010(1):9-10. RONG Genwang, SONG Haiqing. Application and extension of intermediate joint room in cable tunnel[J]. Metallurgic Power, 2010(1): 9-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133