全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大气压下纳秒脉冲弥散放电对铜的表面处理

DOI: 10.13336/j.1003-6520.hve.2015.05.006, PP. 1458-1465

Keywords: 纳秒脉冲,弥散放电,低温等离子体,表面改性,发射光谱,亲水性,硬度

Full-Text   Cite this paper   Add to My Lib

Abstract:

纳秒脉冲弥散放电能够在大气压下产生高功率密度、高电子能量的低温等离子体。为了研究弥散放电等离子体在金属材料表面改性的作用,利用上升沿约150ns、脉宽约300ns的MPC-50D纳秒脉冲电源在大气压下(空气)管-板电极之间产生弥散放电,寻找最佳弥散放电参数,并对金属Cu表面进行了弥散处理。研究结果表明随着重复频率的增加,弥散放电增强,瞬时功率增大,沉积能量增多。当施加电压为31kV,重复频率为800Hz,间隙距离为3cm时,得到最佳的弥散放电效果。此外,采用发射光谱检测到空气中弥散放电中N2(C→B,0-0)的第二正带系和N2+(B→X,0-0)的第一负带系。采用大气压弥散放电等离子体对金属Cu表面处理的结果显示处理后的Cu表面出现孔径约0.5μm的熔孔;Cu的亲水性及表面能有明显提高,在处理90s后趋于饱和。显微硬度测量结果表明,表层硬度在等离子体处理时间480s后提高约26.5%。

References

[1]  Gao Y. Surface modification of TC4 titanium alloy by high current pulsed electron beam (HCPEB) with different pulsed energy densities[J]. Journal of Alloys and Compounds, 2013, 572: 180-185.
[2]  Bizi P, Valette S, Audouard E, et al . Effect of stationary femtosecond laser irradiation on substructures’;
[3]  formation on a mold stainless steel surface[J]. Applied Surface Science, 2013, 270: 197-204.
[4]  Pushkarev A I, Isakova Y I. A gigawatt power pulsed ion beam generator for industrial applications[J]. Surface and Coatings Technology, 2013, 228: 382-384.
[5]  Baksht E H, Burachenko A G, Kostyrya I D, et al . Runaway-electron-preionized diffuse discharge at atmospheric pressure and its application[J]. Journal of Physics D: Applied Physics, 2009, 42(18): 185201.
[6]  Zhang C, Shao T, Yu Y, et al. Detection of X-ray emission in a nanosecond discharge in air at atmospheric pressure[J]. Review of Scientific Instruments, 2010, 81(12): 123501.
[7]  Shulepov M A, Tarasenko V F, Goncharenko I M, et al . Modification of the near-surface layers of a copper foil under the action of a volume gas discharge in air at atmospheric pressure[J]. Technical Physics Letters, 2008, 34(4): 296-299.
[8]  章 程,邵 涛,严 萍. 大气压下纳秒脉冲弥散放电[J]. 科学通报,2014,59(20):1919-1926. ZHANG Cheng, SHAO Tao, YAN Ping. Nanosecond-pulse diffuse discharge at atmospheric pressure[J]. Chinese Science Bulletin, 2014, 59(20): 1919-1926.
[9]  Alekseev S B, Gubanov V P, Kostyrya I D, et al. Pulsed volume discharge in a nonuniform electric field at a high pressure and the short leading edge of a voltage pulse[J]. Quantum Electronics, 2004, 34(11): 1007-1010.
[10]  Tarasenko V F, Baksht E K, Lomaev M I, et al . Transition of a diffuse discharge to a spark at nanosecond breakdown of high-pressure nitrogen and air in a nonuniform electric field[J]. Technical Physics, 2013, 58(8): 1115-1121.
[11]  Levatter J I, Lin S C. Necessary conditions for the homogeneous formation of pulsed avalanche discharges at high gas pressures[J]. Journal of Applied Physics, 1980, 51(1): 210-222.
[12]  Shulepov M A, Akhmadeev Y K, Tarasenko V F, et al . Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO 2 at atmospheric pressure[J]. Russian Physics Journal, 2011, 53(12): 1290-1294.
[13]  章 程,邵 涛,许家雨,等. 大气压空气中纳秒脉冲弥散放电实验研究[J]. 高电压技术,2012,38(5):1090-1098. ZHANG Cheng, SHAO Tao, XU Jiayu, et al . Experimental study on nanosecond-pulse diffuse discharge in atmospheric air[J]. High Voltage Engineering, 2012, 38(5): 1090-1098.
[14]  章 程,邵 涛,马 浩,等. 基于高能电子逃逸行为的纳秒脉冲放电特性分析[J]. 高电压技术,2012,38(7):1648-1654. ZHANG Cheng, SHAO Tao, MA Hao, et al. Analysis of the characteristics of nanosecond-pulse discharge based on runaway behaves of high-energy electrons[J]. High Voltage Engineering, 2012 38(7): 1648-1654.
[15]  Shao T, Zhang C, Niu Z, et al. Diffuse discharge, runaway electron, and X-ray in atmospheric pressure air in an inhomogeneous electrical field in repetitive pulsed modes[J]. Applied Physics Letters, 2011, 98(2): 021503.
[16]  Zhang C, Shao T, Niu Z, et al . Pulse repetition frequency effect on nanosecond-pulse diffuse discharge in atmospheric-pressure air with a point-to-plane gap[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2070-2071.
[17]  Shao T, Tarasenko V F, Zhang C, et al . Generation of runaway electrons and X-rays in repetitive nanosecond pulse corona discharge in atmospheric pressure air[J]. Applied Physics Express, 2011, 4(6): 066001.
[18]  Shao T, Zhang C, Niu Z, et al. Runaway electron preionized diffuse discharges in atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode[J]. Journal of Applied Physics, 2011, 109(8): 083306.
[19]  Shao T, Tarasenko V F, Zhang C, et al. Diffuse discharge produced by repetitive nanosecond pulses in open air, nitrogen, and helium[J]. Journal of Applied Physics, 2013, 113(9): 093301.
[20]  章 程,邵 涛,牛 铮,等. 大气压尖板电极结构重复频率纳秒脉冲放电中X射线辐射特性研究[J]. 物理学报,2012,61(3):035202. ZHANG Cheng, SHAO Tao, NIU Zheng, et al. X-ray generation in repetitive pulsed discharge in atmospheric air with a point-to-plane gap[J]. Acta Physica Sinica, 2012, 61(3): 035202.
[21]  Zhang C, Shao T, Tarasenko V, et al. X-ray emission from a nanosecond-pulse discharge in an inhomogeneous electric field at atmospheric pressure[J]. Physics of Plasmas, 2012, 19(12): 123516.
[22]  Kutsyk I M, Babich L P, Donskoi E N, et al . Analysis of the results of a laboratory experiment on the observation of a runaway electron avalanche in air under high overvoltages[J]. Plasma Physics Reports, 2012, 38(11): 891-898.
[23]  章 程,马 浩,邵 涛,等. 纳秒脉冲气体放电中逃逸电子束流的研究[J]. 物理学报,2014,63(8):085208. ZHANG Cheng, MA Hao, SHAO Tao, et al. Runaway electron beams in nanosecond-pulse discharge[J]. Acta Physica Sinica, 2014, 63(8): 085208.
[24]  Zhang C, Tarasenko V F, Shao T, et al . Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air[J]. Laser and Particle Beams, 2013, 31(2): 353-364.
[25]  Fang Z, Qiu Y, Kuffel E. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air[J]. Journal of Physics D: Applied Physics, 2004, 37(16): 2261.
[26]  Xu J, Zhang C, Shao T, et al . Formation of hydrophobic coating on PMMA surface using unipolar nanosecond-pulse DBD in atmospheric air[J]. Journal of Electrostatics, 2013, 71(3): 435-439.
[27]  Kim K J, Lee N E, Kim M C, et al . Chemical interaction, adhesion and diffusion properties at the interface of Cu and plasma-treated thiophene-based plasma polymer (ThioPP) films[J]. Thin Solid Films, 2001, 398/399: 657-662.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133