全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

1000kV特高压交流电气设备抗震研究进展与展望

DOI: 10.13336/j.1003-6520.hve.2015.05.043, PP. 1732-1739

Keywords: 特高压交流电气设备,抗震理论,标准反应谱,抗震试验技术,抗震评估方法,减震技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高特高压交流电气设备的地震安全性,对电气设备的抗震研究进行了归纳、分析及展望。结果表明应以50a超越概率2%的地震作为设防标准;明确了包络I0-III类场地特征周期的抗震设计标准反应谱,该谱由4部分组成,包括0~0.03s区间的刚性段、0.03~0.1s的直线上升段、0.1~0.9s的共振平台段、0.9~6.0s的曲线下降段;明确了抗震试验技术,包括包络特高压抗震标准反应谱的试验波、地震动激励输入方向、输入输出的容差控制、支架动力放大效应、基于安全系数的试验结果判定准则;提出了抗震性能计算分析方法,包括数值模型的建立、抗震计算、荷载组合方式及抗震性能评判;开发了阻尼减震技术,通过在设备及设备支架之间布置耗能阻尼器,达到了良好的减震效果。未来需要进一步研究的内容为特高压主变设备抗震研究、互连设备抗震优化设计、复合设备抗震性能及抗震评估方法、特高压变电站整体抗震性能等。

References

[1]  程永锋,朱全军,卢智成. 变电站电力设施抗震措施研究现状与发展趋势[J]. 电网技术,2008,32(22):84-89. CHENG Yongfeng, ZHU Quanjun, LU Zhicheng. Progress and development trend on seismic measures of electric power equipments in transformer substation [J].Power System Technology, 2008, 32(22) : 84-89.
[2]  IEEE Std 693-2005 IEEE recommended practice for seismic design of substations[S], 2005.
[3]  IEC 68-2-59 Environmental testing, part 2: tests methods test Fe: vibration-sine-beat method[S], 1990.
[4]  IEC 68-3-3 Environmental testing, part 3: guidance seismic test methods for equipment[S], 1991.
[5]  IEC 1166 High-voltage alternating current circuit-breakers-guide for seismic qualification of high-voltage alternating current circuit-brea- kers[S], 1993.
[6]  IEC TS 61463 Bushing-seismic qualification[S], 2000.
[7]  中国电力科学研究院. 电网地震灾害规律研究及分布图绘制[R]. 北京:中国电力科学研究院,2014:5. China Electric Power Research Institute. Grid research and distribution of earthquake disasters in drawing[R]. Beijing, China: China Electric Power Research Institute, 2014: 5.
[8]  钟 珉,房正刚. 电气设备抗震设防水准研究[J]. 电工电气,2013,33(10):54-58. ZHONG Min, FANG Zhenggang. Study on seismic fortification level of electrical equipment[J]. Electrotechnics Electric, 2013, 33(10): 54-58.
[9]  刘振林,代泽兵,卢智成. 基于Weibull分布的电瓷型电气设备地震易损性分析[J]. 电网技术,2014,38(4):1076-1081. LIU Zhenlin, DAI Zebing, LU Zhicheng. Seismic damage probability analysis of procelain power equipment based on Weibull distribution[J]. Power System Technology, 2014, 38(4): 1076-1081.
[10]  IEC62271-2:2003 High-voltage switchgear and controlgear, part 2: seismic qualification for rated voltages of 72.5 kV and above[S], 2003.
[11]  GB 50260—2013 电力设施抗震设计规范[S]. 北京:中国计划出版社,2013. GB 50260—2013 Code for seismic design of electrical installations[S]. Beijjing, China: China Planning Press, 2013.
[12]  JEAG 5003—2010 电气设备抗震设计指南[S], 2010. JEAG 5003—2010 Guideline for seismic design of electrical equipments[S], 2010.
[13]  程永锋,邱 宁,卢智成,等. 硬管母线连接的1 000 kV避雷器和互感器[J]. 高电压技术,2014, 40(12): 3882-3887. CHENG Yongfeng, QIU Ning, LU Zhicheng, et al . Shake table test research on seismic performance of 1 000 kV arrester and CVT interconnected by tube bus[J]. High Voltage Engieering, 2014, 40(12): 3882-3887.
[14]  GB 50556—2010 工业企业电气设备抗震设计规范[S].北京:中国计划出版社,2010. GB 50556—2010 Code for a seismic design of electrical facilities in industrial plants[S]. Beijing, China: China Planning Press, 2010.
[15]  IEEE Std 344—2004 Recommended practice for seismic qualification of class 1E equipment for nuclear power generating stations[S], 2005.
[16]  IEEE 1527—2006 Recommended practice for the design of flexible bus-work located in seismically active areas[S], 2006,
[17]  GB 50267-97 核电厂抗震设计规范[S]. 北京: 中国计划出版社, 1998. GB 50267-97 Code for seismic design of nuclear plants[S]. Beijjing, China: China Planning Press, 1998.
[18]  中国电力科学研究院. 特高压电气设备抗震评估与减震设计研究[R]. 北京:中国电力科学研究院,2012. China Electric Power Research Institute. Research report on seismic evaluation and energy dissipation design of UHV electrical equipment[R]. Beijing, China: China Electric Power Research Institute, 2012.
[19]  Howard M, André;
[20]  F. Seismic qualification requirements for transformer bushings[R]. San Diego, USA: University of California, 2004.
[21]  卢智成,代泽兵,孟宪政,等. 特高压变电设备抗震振动台试验方法研究[J]. 建筑结构,2013,43(增刊1):1269-1272. LU Zhicheng, DAI Zebing, MENG Xianzheng, et al .Study on seismic shaking table test method of UHV substation equipments[J]. Building Structure, 2013, 43(Supplement1): 1269-1272.
[22]  周 云. 金属耗减震结构设计[M]. 武汉:武汉理工大学出版社,2006. ZHOU Yun. Structural design of metal energy dissipation[M]. Wuhan, China: Wuhan University Press, 2006.
[23]  中国电力科学研究院. 特高压变电设备抗震试验技术研究[R]. 北京:中国电力科学研究院,2014. China Electric Power Research Institute. Technical report on study of seismic test technology of UHV electrical equipment[R]. Beijing, China: China Electric Power Research Institute, 2014.
[24]  中国电力科学研究院. 相互连接的特高压变电设备抗震性能研究[R]. 北京:中国电力科学研究院,2014. China Electric Power Research Institute. Technical report on study of seismic performance of interconnected electrical equipment at UHV substation[R]. Beijing, China: China Electric Power Research Institute, 2014.
[25]  卢智成,朱全军,程永锋. 隔振(震)技术在电力设施中的应用及前景[J]. 电力建设,2009,32(6):87-89. LU Zhicheng, ZHU Quanjun, CHENG Yongfeng. Vibration isolation technique application and prospect in power apparatus[J]. Electric Power Construction, 2009, 32(6): 87-89.
[26]  Q/GWD 11132—2013 特高压瓷绝缘电气设备抗震设计及减震装置安装与维护技术规程[S]. 北京:中国电力出版社,2014. Q/GDW 11132—2013 Technical specification for seismic design of ultra-high voltage porcelain insulating equipments and installation/ maintenance to energy dissipation devices[S]. Beijing, China: China Electric Power Press, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133