全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

离子迁移率测量装置研制及其在不同温、湿度下的变化规律

DOI: 10.13336/j.1003-6520.hve.2015.05.038, PP. 1696-1703

Keywords: Gerdien,离子迁移率,离子流场,传感器,温度,湿度,水合作用,离子组分

Full-Text   Cite this paper   Add to My Lib

Abstract:

离子迁移率是直流输电线路离子流场计算的关键参数。为研究不同温、湿度条件下离子流场中的离子迁移率变化规律,在分析推导Gerdien离子迁移率测量原理的基础上,提出了一种在常规Gerdien管传感器两端设置屏蔽电极来抑制外部合成电场对测量区电场畸变效应的方法,研制出一套直流输电线路合成电场离子迁移率测量传感器及测控装置。在人工气候室中,搭建了直流输电线路离子流场模拟试验平台,对测量装置的适用性进行了验证。试验表明常温常湿条件下正、负离子迁移率分别为1.25cm2/(V·s)和1.59cm2/(V·s);温度变化范围为10~40℃、湿度变化范围为3~25g/m3时,正、负离子平均迁移率呈现出随温度增大而减小,随绝对湿度增大而减小并趋于饱和的变化规律,满足指数变化的拟合公式。分析指出轻、重离子浓度比例变化与离子的水合反应程度为其变化原因。该研究工作可为直流输电线路离子流场的准确预测提供参考。

References

[1]  刘振亚. 特高压直流输电工程电磁环境[M]. 北京:中国电力出版社,2009:57-93. LIU Zhenya.UHVDC transmission project electromagnetic environment[M]. Bejing, China: China Electric Power Press, 2009: 57-93.
[2]  干喆渊,邬 雄,张广洲,等. ±500 kV直流输电系统电磁环境调查研究[J]. 高电压技术,2006,32(9):146-148,152. GAN Zheyuan, WU Xiong, ZHANG Guangzhou, et al . Research on the EM environment of HVDC transmission system[J]. High Voltage Engineering, 2006, 32(9): 146-148, 152.
[3]  李先志,梁 明,李澄宇,等. ±1 100 kV特高压直流输电线路按电磁环境条件的导线设计[J]. 高电压技术,2012,38(12):3284-3291. LI Xianzhi, LIANG Ming, LI Chengyu, et al . Conductor design of ±1 100 kV UHVDC transmission lines based on electromagnetic environment conditions[J]. High Voltage Engineering, 2012, 38(12): 3284-3291.
[4]  Takuma T, Ikeda T, Kawamoto T. Calculation of ion flow fields of HVDC transmission lines by the finite element method[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 1(12): 4802-4810.
[5]  Maruvada P S, Janischewky W. Analysis of corona loss on DC transmission lines: II-bipolar lines[J]. IEEE Transactions on Power Apparatus and System, 1969, 88(10): 1476-1491.
[6]  崔 翔,周象贤,卢铁兵. 高压直流输电线路离子流场计算方法研究进展[J]. 中国电机工程学报,2012,32(36):130-141. CUI Xiang, ZHOU Xiangxian, LU Tiebing. Recent progress in the calculation methods of ion flow field of HVDC transmission lines[J]. Proceedings of the CSEE, 2012, 32(36): 130-141.
[7]  尹 晗,郭 剑,张 波,等. 直流电晕笼中离子流场的计算[J]. 高电压技术,2011,37(3):758-764. YIN Han, GUO Jian, ZHANG Bo, et al . Calculation of the ion flow field in the DC corona cage[J]. High Voltage Engineering, 2011, 37(3): 758-764.
[8]  余世峰,阮江军,张 宇,等. 直流离子流场的有限元迭代计算[J]. 高电压技术,2009,35(4):894-899. YU Shifeng, RUAN Jiangjun, ZHANG Yu, et al. Finite element iterative computation of direct current ionized field[J]. High Voltage Engineering, 2009, 35(4): 894-899.
[9]  李 伟,张 波,何金良. 多回直流输电线路的离子流场计算[J]. 高电压技术,2008,34(12):2719-2725. LI Wei, ZHANG Bo, HE Jinliang. Ion flow field calculation of multi-circuit DC transmission lines[J]. High Voltage Engineering, 2008, 34(12): 2719-2725.
[10]  Raether H. Electron avalanches and breakdown in gases[M]. London, England: Butterworths, 1964: 40-45.
[11]  Patterson P L. Mobilities of negative ions in SF 6 [J]. The Journal of Chemical Physics, 1970, 53(2): 696-704.
[12]  Misakian M. Generation and measurement of dc electric fields with space charge[J]. Journal of Applied Physics, 1981, 52(5):3135-3144.
[13]  季一鸣,张 波,何金良. 大气条件下离子迁移率测量装置的结构分析与结果校正[J]. 高电压技术,2014,40(6):1768-1774. JI Yiming, ZHANG Bo, HE Jinliang. Structure analysis and result correction of ion mobility measurement apparatus in air[J]. High Voltage Engineering, 2014, 40(6): 1768-1774.
[14]  Kubasek R, Roubal Z, Szabo Z, et al . The measurement of air ions spectrum using the aspiration method[C]∥2009 3 rd International Conference on Signals, Circuits and Systems (SCS). Medenine, Tunisia: IEEE, 2009: 1-4.
[15]  Suda T, Sunaga Y. Small ion mobility characteristics under the Shiobara HVDC test line[J]. IEEE Transactions on Power Delivery, 1990, 5(1): 247-253.
[16]  欧阳建明,邵福球,邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟[J]. 物理学报,2011,60(11):53-56. OUYANG Jianming, SHAO Fuqiu, ZOU Debin. Numerical simulation of negative oxygen ion generation and temporal evolution in atmospheric plasma[J].Acta Physica Sinica, 2011, 60(11): 53-56.
[17]  Aleksandrov N L, Bazelyan E M, D’Alessandro F, et al. Numerical simulations of thunderstorm-induced corona processes near lightning rods installed on grounded structures[J]. Journal of Electrostatics, 2006, 64(12): 802-816.
[18]  Chauzy S, Soula S. Contribution of the ground corona ions to the convective charging mechanism[J]. Atmospheric Research, 1999, 51(3): 279-300.
[19]  Huertas M L, Fontan J. Evolution times of tropospheric positive ions[J]. Atmospheric Environment, 1975, 9(11): 1018-1026.
[20]  Huertas M L, Fontan J, Gonzalez J. Evolution times of tropospheric negative ions[J]. Atmospheric Environment, 1978, 12(12): 2351-2362.
[21]  Johnson G B, Zaffanella L E. Techniques for measurements of the electrical environment created by HVDC transmission lines[C]∥Proceedings of the 4 th International Symposium of HV Engineering. Athens, Greece: [s.n.], 1983: 1-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133