刘连光,崔明德,孙中明,等. ±800 kV直流接地极对交流电网的影响范围[J]. 高电压技术,2009,35(6):1243-1247. LIU Lianguang, CUI Mingde, SUN Zhongming, et al . Influence scope of AC network by DC grounding electrode rated ±800 kV[J]. High Voltage Engineering, 2009, 35(6): 1243-1247.
[2]
鲁海亮,文习山,蓝 磊,等. 变压器直流偏磁对无功补偿电容器的影响[J]. 高电压技术,2010,36(5):1124-1130. LU Hailiang, WEN Xishan, LAN Lei, et al . Impact of transformer DC bias on reactive compensation capacitor[J]. High Voltage Engineering, 2010, 36(5): 1124-1130.
[3]
张 露,阮 羚,潘卓洪,等. 变压器直流偏磁抑制设备的应用分析[J]. 电力自动化设备,2013,33(9):151-156. ZHANG Lu, RUAN Ling, PAN Zhuohong, et al . Evaluation of DC bias restraint equipment application[J]. Electric Power Automation Equipment, 2013, 33(9): 151-156.
[4]
郑 涛,陈佩璐,毛安澜,等. 地磁感应电流作用下的CT饱和特性及其引起的变压器差动保护误动[J]. 电网技术,2014,38(2):520-525. ZHENG Tao, CHEN Peilu, MAO Anlan, et al. Research on CT saturation characteristics affected by geomagnetically induced current and resulting malfunction of transformer differential protection[J]. Power System Technology, 2014, 38(2): 520-525.
[5]
饶 宏,李 岩,黎小林,等. 4个直流输电工程共用1个接地极运行方式的研究[J]. 高电压技术,2012,38(5):1179-1185. RAO Hong, LI Yan, LI Xiaolin, et al . Study on four HVDC systems sharing a common ground electrode[J]. High Voltage Engineering, 2012, 38(5): 1179-1185.
[6]
郭 剑. 直流接地极对电气化铁路的电磁影响[J]. 高电压技术,2013,39(1):241-250. GUO Jian. Electromagnetic influences of ground electrode on electrified railway[J]. High Voltage Engineering, 2013, 39(1): 241-250.
[7]
潘卓洪,张 露,谭 波,等. 高压直流输电入地电流在交流电网分布的仿真分析[J]. 电力系统自动化,2011,35(21):110-115. PAN Zhuohong, ZHANG Lu, TAN Bo, et al . Simulation and analysis of HVDC earth-return current's distribution in AC power grid[J]. Automation of Electric Power Systems, 2011, 35(21): 110-115.
[8]
刘 曲,李立涅,郑健超. 复合土壤模型下HVDC系统单极大地运行时的电流分布[J]. 中国电机工程学报,2007,27(36):8-13. LIU Qu, LI Licheng, ZHENG Jianchao. DC currents distribution in HVDC systems of monopolar operation with ground return in complex soil structure[J]. Proceedings of the CSEE, 2007, 27(36): 8-13.
[9]
何俊佳,叶会生,林福昌,等. 土壤结构对流入变压器中性点直流电流的影响[J]. 中国电机工程学报,2007,27(36):14-17. HE Junjia, YE Huisheng, LIN Fuchang, et al . Influence of soil structure on direct current flowing into neutral point of power transformer[J]. Proceedings of the CSEE, 2007, 27(36): 14-17.
[10]
潘卓洪,张 露,刘 虎,等. 多层水平土壤地表电位分布的仿真分析[J]. 高电压技术,2012,38(1):116-123. PAN Zhuohong, ZHANG Lu, LIU Hu, et al . Simulation and analysis of earth surface potential distribution in horizontal multi-layer soil[J]. High Voltage Engineering, 2012, 38(1): 116-123.
[11]
潘卓洪,张 露,林进弟,等. 多层水平土壤对交流电网直流分布的影响[J]. 高电压技术,2012,38(4):855-862. PAN Zhuohong, ZHANG Lu, LIN Jindi, et al . Influence of horizontal multi-layer soil on DC current distribution in AC power grid[J]. High Voltage Engineering, 2012, 38(4): 855-862.
[12]
魏敏敏,曹保江,任志超,等. 地形结构及参数对特高压直流地电流散流特性的影响分析[J]. 高电压技术,2012,38(2):414-420. WEI Minmin, CAO Baojiang, REN Zhichao, et al . Influence of terrain structure and parameter on the divergence character of UHVDC grounding current[J]. High Voltage Engineering, 2012, 38(2): 414-420.
[13]
黄 渤,吴广宁,曹晓斌,等. 高压直流输电接地极溢流特性[J]. 电网技术,2013,37(4):1174-1179. HUANG Bo, WU Guangning, CAO Xiaobin, et al . Current overflow characteristics of earth electrodes for HVDC transmission system[J]. Power System Technology, 2013, 37(4): 1174-1179.
[14]
任志超,续建国,张一坤,等. 交直流互联系统直流地表电位简易算式[J]. 电工技术学报,2011,26(7):256-263. REN Zhichao, XU Jianguo, ZHANG Yikun, et al . Study of the simple formula of dc surface potential in ac-dc interconnected large power system [J]. Transactions of China Electrotechnical Society, 2011, 26(7): 256-263.
[15]
李长云,李庆民,李 贞,等. 半岛地质条件下计算高压直流输电地中直流分布的扩展镜像法[J]. 高电压技术,2011,37(2):444-452. LI Changyun, LI Qingmin, LI Zhen, et al . Extended image method to determine the underground DC current distribution of HVDC transmission systems under peninsula geological conditions[J]. High Voltage Engineering, 2011, 37(2): 444-452.
[16]
苏 杰,吴广宁,曹晓斌,等. 应用可控源音频大地电磁法的土壤电阻率测量[J]. 电网技术,2011,35(1):141-145. SU Jie, WU Guangning, CAO Xiaobin, et al . Analysis on soil resistivity measurement based on controlled source audio-frequency magneto-telluric[J]. Power System Technology, 2011, 35(1): 141-145.
[17]
中华人民共和国国家发展和改革委员会. DL/T 5224-2005 高压直流输电大地返回运行系统设计技术规定[S]. 北京:中国电力出版社,2009. National Development and Reform Commission. DL/T 5224-2005 Technical rule of the design of HVDC earth return operation system[S]. Beijing, China: China Electric Power Press, 2009.
[18]
国家能源局. DL/T 437—2012 高压接地直流极技术导则[S]. 北京:中国电力出版社,2012:1-14. National Energy Administration. DL/T437-2012 Technical guide of HVDC earth electrode system[S]. Beijing, China: China Power Press, 2012: 1-14.
[19]
解广润. 电力系统接地技术[M]. 北京:水利电力出版社,1991:95-100. XIE Guangrun. Grounding technology of power system[M]. Beijing, China: China Water Power Press, 1991: 95-100.
[20]
Ma J, Dawalibi F. Analysis of grounding systems in soils with finite volumes of different resistivities[J]. IEEE Transactions on Power Delivery, 2002, 17(2): 596-602.
[21]
Marti L, Rezaei-Zare A, Boteler D. Calculation of induced electric field during a geomagnetic storm using recursive convolution[J]. IEEE Transactions on Power Delivery, 2014, 29(2): 802-807.
[22]
Zheng K, Pirjola R J, Boteler D H, et al . Geoelectric fields due to small-scale and large-scale source currents[J]. IEEE Transactions on Power Delivery, 2013, 28(1): 442-449.
[23]
Li Z X, Chen W J, Fan J B, et al . A novel mathematical modeling of grounding system buried in multilayer earth[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1267-1272.
[24]
Kelbert A, Schultz A, Egbert G. Global electromagnetic induction constraints on transition-zone water content variations[J]. Nature, 2009, 460(20): 1003-1007.