全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

固态Marx发生器研究进展

DOI: 10.13336/j.1003-6520.hve.2015.06.003, PP. 1781-1787

Keywords: Marx发生器,气体开关,固态开关,电压叠加,脉冲调制,电力电子,多电平

Full-Text   Cite this paper   Add to My Lib

Abstract:

为推动固态Marx发生器技术的研究和发展,介绍了近年来国内外学术界对固态Marx发生器技术的研究现状,重点分析了固态Marx发生器涉及的隔离充电技术、陡化技术以及负载能力等关键技术问题,并展望了其未来发展的趋势。固态Marx发生器的固态开关采用独立触发方式,每个开关可分别控制开通和关断,具有多参数特制、高频化、寿命长3方面的突出技术优势。通过采用隔离充电方式,可以实现低压充电电源和高压脉冲输出之间的电气隔离;通过陡化技术,可以实现数十ns脉冲上升沿输出;结合特定设计,固态Marx发生器可适用于驱动电阻、电容、电感以及它们的组合型非线性负载,在一定范围内调制出需要的电压、电流波形,具有较大的灵活性。伴随着半导体开关器件以及电力电子技术水平的发展,固态Marx发生器将向小型化、集成化和模块化方向发展,满足脉冲功率技术未来不断提高的应用需求。

References

[1]  李洪涛,王传伟,王凌云,等. 500 kV全固态Marx发生器[J]. 强激光与粒子束,2012,24(4):917-920. LI Hongtao, WANG Chuanwei, WANG Lingyun, et al . 500 kV all-solid-state Marx generator[J]. High Power Laser and Particle Beams, 2012, 24(4): 917-920.
[2]  王凌云,王传伟,李洪涛,等. 500 kV固态Marx发生器IGBT多路驱动高压隔离供电电源的设计[J]. 高电压技术,2012,38(1):236-240. WANG Lingyun, WANG Chuanwei, LI Hongtao, et al . Design of 500 kV solid-state Marx generator IGBT driver voltage multi-channel insulated power supply[J]. High Voltage Engineering, 2012, 38(1): 236-240.
[3]  周 星,赵 敏,范丽思,等. 基于Marx电路的小型电磁脉冲发生器[J]. 高电压技术,2013,39(10):2403-2408. ZHOU Xing, ZHAO Min, FAN Lisi, et al . Miniature EMP generator based on Marx circuit.[J]. High Voltage Engineering, 2013, 39(10): 2403-2408.
[4]  杨清熙,王庆国,周 星,等. 固态快前沿双指数脉冲源设计与仿真[J]. 高电压技术,2014,40(1):237-241. YANG Qingxi, WANG Qingguo, ZHOU Xing, et al . Design and simulation of solid state pulser with fast rise time and double-exponential waveform[J]. High Voltage Engineering, 2014, 40(1): 237-241.
[5]  姚陈果,章锡明,李成祥,等. 基于现场可编程门阵列的全固态高压ns脉冲发生器[J]. 高电压技术,2012,38(4):929-934. YAO Chenguo, ZHANG Ximing, LI Chengxiang, et al . All solid-state high-voltage nanosecond pulse generator based on FPGA[J]. High Voltage Engineering, 2012, 38(4): 929-934.
[6]  Wu Y F, Liu K F, Qiu J, et al . Repetitive and high voltage Marx generator using solid-state devices[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(4): 937-940.
[7]  Liu K F, Luo T, Qiu J. A repetitive high voltage pulse adder based on solid state switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16(4): 1076-1080.
[8]  Wang D D, Qiu J, Liu K F. All-solid-state repetitive pulsed-power generator using IGBT and magnetic compression switches[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2633-2638.
[9]  Gao L, Wang D D, Qiu J, et al . All-solid-state pulse adder with bipolar high voltage fast narrow pulses output[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 775-782.
[10]  Sakamoto T, Nami A, Akiyama M, et al . A repetitive solid state Marx-type pulsed power generator using multistage switch-capacitor cells[J]. IEEE Transactions on Plasma Science, 2012, 40(10): 2316-2321.
[11]  Rashid M H. 电力电子技术手册[M]. 陈建业,于歆杰,梁自泽,等译. 北京:机械工业出版社,2004:90. Rashid M H. Power electronics handbook[M]. CHEN Jianye, YU Xinjie, LIANG Zize, et al . translated. Beijing, China: China Machine Press, 2004: 90.
[12]  王冬冬. 大功率固态开关在脉冲功率应用中的特性研究[D]. 上海:复旦大学,2011. WANG Dongdong. Characteristic analysis of high power solid state switches in pulsed power applications[D]. Shanghai, China: Fudan University, 2011.
[13]  李柳霞. 容性负载下全固态脉冲功率源特性的研究[D]. 上海:复旦大学,2013. LI Liuxia. Characteristic study on the all-soild-state posed power supply with capacitive load[D]. Shanghai, China: Fudan University, 2013.
[14]  Rao J F, Liu K F, Qiu J. All solid-state nanosecond pulsed generators based on marx and magnetic switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1123-1128.
[15]  Marx E. Method for breakdown tests of isolators and other electric devices: Germany, 455933[P]. 1923.
[16]  刘锡三. 高功率脉冲技术[M]. 北京:国防工业出版社,2005. LIU Xisan. High power pulse technology[M]. Beijing, China: National Defense Industry Press, 2005.
[17]  Bluhm H. 脉冲功率系统的原理与应用[M]. 北京:清华大学出版社,2008. Bluhm H. Pulsed power system principles and applications[M] Beijing, China: Tsinghua University Press, 2008.
[18]  Benford J, Swegle A, Schamiloglu E. High Power Microwaves[M]. 2 nd edition. London, UK: Taylor & Francis Group, 2007.
[19]  Leyh G E. The Marx modulator development program for the International Linear Collider[C]∥2006 27 th International Power Modulator Symposium. Arlington, USA: IEEE, 2006: 423-426.
[20]  Cassel R L, Hitchcock R N, Hitchcock S S. A high power dynamically flexible pulse width radar modulator[C]∥2007, 16 th IEEE International Pulsed Power Conference. Albuquerque, USA: IEEE, 2007: 1492-1494.
[21]  Redondo L M, Silva J F, Tavares P, et al . High-voltage high-frequency Marx-bank type pulse generator using integrated power semiconductor half-bridges[C]∥2005 European Conference on Power Electronics and Applications. Dresden, Germany: IEEE, 2005: 1-8.
[22]  Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Transactions on Plasma Science, 2009, 37(8): 1632-1637.
[23]  Redondo L M. A DC voltage-multiplier circuit working as a high-voltage pulse generator[J]. IEEE Transactions on Plasma Science, 2010, 38(10): 2725-2729.
[24]  Baek J-W, Yoo D-W, Rim G-H, et al . Solid state Marx generator using series-connected IGBTs[J]. IEEE Transactions on Plasma Science, 2005, 33(4): 1198-1204.
[25]  Ryoo H J, Kim J S, Rim G H, et al . Development of 60 kV pulse power generator based on IGBT stacks for wide application[C]∥27 th IEEE International Power Modulator Symposium. Arlington, USA: IEEE, 2006: 511-514.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133