全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

天然土壤对菲吸附行为的动态变化

Keywords: ,土壤有机质,非线性吸附,动态变化

Full-Text   Cite this paper   Add to My Lib

Abstract:

选择8种有机质含量各异的土壤,考察其对菲吸附行为的动态变化特征,并利用Freundlich模型描述1、48和720h条件下菲的相分配关系。结果表明,在不同接触时间条件下,Freundlich吸附系数KF与土壤有机质含量呈显著的线性关系,8种土样吸附行为的非线性指数n随时间逐渐减小,经土壤有机碳含量校正的单点Koc*值也随时间上升。这些结果指示土壤有机质是有机污染物土壤吸附的主要汇,土壤有机质吸附位点的位能表现为非均匀分布,颗粒内部有机质吸附位点的容量更大。此外,利用差减方式得到吸附过程后段的相分配关系的非线性明显强于吸附过程前段,说明慢吸附阶段中结构致密的土壤有机质组分的影响更趋强烈疏水性有机污染物在致密有机质组份中的扩散过程很可能是慢反应发生的主要原因。

References

[1]  Pignatello J J,Xing B.Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles[J].Environ Sci Technol,1996,30:1-11.
[2]  McGinley P M,Katz L E,Weber W J.A distributed reactivity model for sorption by soils and sediments.2.Multicomponent systems and competitive effects[J].Environ Sci Technol,1993,27:1524-1531.
[3]  Young T M,Weber W J.A Distributed Reactivity Model for Sorption by Soils and Sediments.3.Effects of Diagenetic Processes on Sorption Energetics[J].Environ Sci Technol,1995,29:92-97.
[4]  Xing B,Pignatello J J.Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly(Vinyl Chloride) and Soil Organic matter[J].Environ Sci Technol,1997,31:792-799.
[5]  Weber W J,Huang W L.A Distributed Reactivity Model for Sorption by Soils and Sediments.4.Intraparticle Heterogeneity and phaseDistribution Relationships under Nonequilibrium Conditions[J].Environ Sci Technol,1996,30:881-888.
[6]  Xing B,Pignatello J J.Time-dependent Isotherm Shape of Organic Compounds in Soil Organic Matter:Implications for Sorption Mechanism[J].Environ Toxicol Chem,1996,15:1282-1288.
[7]  Schwarzenbach R P,Westall J.Transport of Nonpolar Organic Compounds from Surface Water to Groundwater.Laboratory Sorption Studies[J].Environ Sci Technol,1981,15:1360-1367.
[8]  Carmo A M,Hundal L S,Thompson M L.Sorption of Hydrophobic Organic Compounds by Soil Materials:Application of Unit equivalent Freundlich Coefficients[J].Environ Sci Technol,2000,34:4363-4369.
[9]  Chen Z,Xing B,McGill W B.A Unified Sorption Variable for Environmental Application of the Freunlich Equation[J].J Environ Qual,1999,28:1422-1428.
[10]  Pignatello J J,Ferrandino F J,Huang L Q.Elution of Aged and Freshly Added Herbicides from a Soil[J].Environ Sci Technol,1993,27:1563-1571.
[11]  Onken B M,Traina S J.The Sorption of Pyrene and Anthracene to Humic Acid-Mineral Complexes:Effect of Fractional Organic Carbon Content[J].JEnviron Qual,1997,26:126-132.
[12]  Wang K,Xing B.Structural and Sorption Characteristics of Adsorbed Humic Acid on Clay Minerals[J].JEnviron Qual,2005,34:342-349.
[13]  Gunasekara A S,Xing B.Organic Compounds in the EnvironmentSorption and Desorption of Naphthalene by Soil Organic Matter:Importance of Aromatic and Aliphatic Components[J].JEnviron Qual,2003,32:240-246.
[14]  Steinberg S M,Pignatello J J,Sawhney B L.Persistence of 1,2-Dibromoethane in Soils:Entrapment in Intraparticle Micropores[J].Environ Sci Technol,1987,21:1201-1208.
[15]  Brusseau M L,Jessup R E,Rao P S C.Nonequilibrium Sorption of Organic Chemicals:Elucidation of Rate-limiting Processes[J].Environ Sci Technol,1991,25:134-142.
[16]  Wu S,Gschwend P M.Sorption Kinetics of Hydrophobic Organic Compounds to Natural Sediments and Soils[J].Environ Sci Technol,1986,20:717-725.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133