全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

镉胁迫对浮萍叶片光合功能的影响

Keywords: 浮萍,镉胁迫,叶绿素荧光参数,叶绿体ATP合酶,硝酸还原酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨镉对浮萍的叶片的光合功能的影响,用1/5Hoagland营养液培养浮萍为研究材料,当叶片直径长到5mm左右时,在1/5Hoagland培养液内加入CdCl2使镉质量浓度分别为0、2、4、6、8、10mg·L-1进行镉胁迫,再培养2d后。分别测定叶绿素a荧光参数、叶片光合放氧速率、叶绿体ATP合酶的活性、硝酸还原酶活性和NO-3的含量。结果表明:随着镉处理浓度的增加,叶绿体光系统Ⅱ(photosystemⅡ:PSⅡ)叶绿素a荧光参数最大光化学效率(maximalphotochemicalefficiency:Fv/Fm),光化学猝灭系数(photochemicalquenching:qP),光系统Ⅱ电子传递量子效率(quantumefficiencyofphotosystemⅡphotochemistry:ФPSⅡ)都在下降,当使用浓度达4mg·L-1时,下降的数值和相比已达差异显著水平。非光化学猝灭系数(non-photochemicalquenching:NPQ)随着使用浓度的增加而增加。光合作用放氧速率、叶绿体ATP合酶活性、硝酸还原酶(nitratereductase:NR)活性都随着镉浓度增加而不断降低,镉浓度达4mg·L-1时,和对照相比已达差异显著水平,而NO-3的含量增加。说明浮萍受镉胁迫后产生了光抑制,不但降低了光合速率也对NO-3的还原产生抑制作用,导致NO3-在叶片内积累。

References

[1]  Krupa Z.Cd-induced changes in the composition and structure of the light-harvesting chlorophyll a:b protein complex in radish[J].Physiol Plant,1988,73:518-524.
[2]  Krupa Z,quist G O,Huner N.The effects of cadmium on photosynthesis of Phaseolus ulgaris-a fluorescence analysis[J].Physiol Plant,1988,88:626-630.
[3]  Ruban A V,Horton P.Regulation of non-photochemical quenching of chlorophyll fluorescence in plants[J].Aust J Plant Physiol,1995,22:221-230.
[4]  Pogson B J,Niyogi K K,Bjorkman O,et al.Altered xanthophyll composition adversely affect chlorophyll accumulation and non-photochemical quenching in Arabidopsis mutant[J].Proc Nat Acad Sci USA,1998,95:13324-13329.
[5]  Krupa Z,Moniak M.The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity[J].Plant Science,1998,138:149-156.
[6]  Mallicka N,Mohn F H.Use of chlorophyll fluorescence in metal-stress research:a case study with the green microalga Scenedesmus[J].Ecotoxicology and Environmental Safety,2003,55:64-69.
[7]  王贵民,陈国祥,王习达,等.水稻两优培九与汕优63苗期Cd毒害下抗性差异的研究[J].农业环境科学学报,2004,23(2):217-220.
[8]  Peter F,Katharina K,Anja K L.Mechanism of Cd2 toxicity:Cd2 inhibits photoactivation of Photosystem Ⅱ by competitive binding to the essential Ca2 site[J].Biochimica et Biophysica Acta,2005,1706:158-164.
[9]  Jannssen L H J,Warm H W,Van Hasselt P R.Temperature dependence of chlorophyll fluorescence induction and photosynthesis in tomato as affected by temperature and light conditions during growth[J].Plant Physiol,1992,139:549-554.
[10]  Houda G,Mohamed H G,Christian M.Effects of cadmium on activity of nitrate reduetase and on other enzymes of the nitrate assimilation pathway in bean[J].Plant Physiol Biochem,2000,38:629-638.
[11]  Maartje D,Vasiliky T,Inés G,et al.Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii[J].Plant Physiol Biochem,2001,39:443-448.
[12]  Lakshaman K C,Virinder K.G,Surinder K S.Effect of cadmium on enzymes of nitrogen metabolism in pea seedlings[J].Phytochemistry,1992,2(31):395-400.
[13]  Xiong Z T,Chao L,Geng B.Phytotoxic effects of copper on nitrogen metabolism and plant growth in Brassica pekinsis Rupr[J].Ecotoxicology and Environmental Safety,2006,64:273-280.
[14]  Chiraz C,Houda G,Céline M,et al.Réversibilité des effets du cadmium sur la croissance et l\' assimilation de l\' azote chez la tomate(Lycopersicon esculentum)[J].Comptes Rendus Biologies,2003,326:401-412.
[15]  汤春芳,刘云国,曾光明,等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J].植物生理与分子生物学报,2004,30(4):469-474.
[16]  David G.Mendoza-Co\'zatl,Rafael Moreno-Sa\'nchez.Cd2 transport and storage in the chloroplast of Euglena gracilis[J].Biochimica et Biophysica Acta,2005,1706:88-97.
[17]  施国新,杜开,解凯彬,等.汞、镉污染对黑藻叶细胞伤害的超微结构研究[J].植物学报,2000,42(4):373-378.
[18]  徐楠,施新国,杜开和,等.Hg、Cd及其复合污染对浮萍叶片的毒害研究[J].南京师范大学学报,2002,25(3):109-115.
[19]  Aravind P,Prasad M N V.Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L.,a freshwater macrophyte[J].Plant Science,2004,166:1321-1327.
[20]  Schnettger B,Critchley C,Santore U J,et al.Relationship between photoinhition of photosynthesis,D1 protein tnrnover and chloroplast structure:ffects of protein synthesis[J].Plant Cell Environment,1994,17:55-64.
[21]  王则港,骆剑峰,刘冲.单一重金属污染对水稻叶片光合特性的影响[J].上海环境科学;2004,23(6):240-243.
[22]  Van Assche F,Cligsters H.Effects of heavy metal on enzyme activity in Plants[J].Plant Cell Environment,1990,13(2):195-206.
[23]  Clijsters H,van Assche F.Inhibition of photosynthesis by heavy metals[J].Photosynthesis Research,1985,7:31-40.
[24]  徐红霞,翁晓燕,毛伟华,等.镉胁迫对水稻光合叶绿素荧光特性和能量分配的影响[J].中国水稻科学,2005,19(4):338-342.
[25]  H(o)rensteiner S,Feller U.Nitrogen metabolism and remobilization during senescence[J].Journal Experiment Botany,2002,53:927-937.
[26]  Maksymiec W,Wojcik M,Krupa Z.Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate[J].Chemosphere,2007,66:421-427.
[27]  Prasad M N V,Malec P,Waloszek A,et al.Physiological responses of Lemna trisulca L.(duckweed)to cadmium and copper bioaccumulation[J].Plant Scienee,2001,161:881-889.
[28]  龚道新,汪传刚,杨仁斌,等.咪鲜胺及其制剂对三叶浮萍生长的影响[J].湖南农业大学学报(自然科学版),2005,31(6):668-671.
[29]  宋志慧,黄国兰.浮萍在水生态毒理学中的应用[J].环境科学与技术,2005,28(1):94-99.
[30]  Carla O,Omar A,Eric V B,et al.Experimental study and modelling of Cr(Ⅵ)removal from wastewater using Lemna minor[J].Water Research,2006,40:1458-1464.
[31]  Frankart C,Eullaffroy P,Vernet G.Photosynthetic responses of Lemna minor expoged to xenobiotics,copper,and their combinations[J].Ecotoxicology and Environmental Satety,2002,53:439-445.
[32]  邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.110-165.
[33]  上海植物生理所主编.现代植物生理实验指导[M].北京:科学出版社,2000.
[34]  林冬,朱诚,孙宗修.镉敏感水稻突变体在镉胁迫下活性氧代谢的变化[J].环境科学,2006,27(3):561-566.
[35]  查燕,杨居荣,刘虹,等.污染稻麦籽实中镉和铅的分布及其存在形态[J].北京师范大学学报(自然科学版),2000,36(2):268-273.
[36]  刘发欣,高怀友,伍钧.镉的食物链迁移及其污染防治对策研究[J].农业环境科学学报2006,25(增刊):805-809.
[37]  邱海杰,熊治廷,费利西泰.水杨酸对Cd胁迫下两种大白菜主要营养品质的影响[J].农业环境科学学报,2006,25(4):871-874.
[38]  郑姗,邱栋梁.植物重金属污染的分子生物学研究进展[J].农业环境科学学报,2006,25(增刊):792-798.
[39]  付庆灵,吕意,黎佳佳,等.生菜对灰潮土重金属Cd、Pb污染的反应与矿质元素吸收[J].农业环境科学学报,2006,25(5):1153-1156.
[40]  Mendoza-Cózatl DG,Moreno-Saánchez R.Cd2 transport and storage in the chloroplast of Euglena gracilis[J].Biochimica et Biophysica Acta,2005,1706:88-97.
[41]  Gorinova N,Nedkovska M,Todorovska E,et al.Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.).Physiological and biochemical response of the transformants to cadmium toxicity[J].Environmental Pollution,2006,145:161-170.
[42]  Krupa Z.Cadmium against higher plant photosynthesis-a variety of effects and where do they possibly come from[J].Zeitschrift Naturforschung,1999,54:723-729.
[43]  Seregin I V,Ivanov V B.Physiological aspects of cadmium and lead toxic effects on higher plants[J].Russian Journal of Plant Physiology,2001,48:523-544.
[44]  Gojion A,Dapoigny L,Lejay L,et al.Effects of genetic modifications of nitrate reductase experession on 15NO-3 uptake and reduction in nicotiann plants[J].Plant,Cell and Environments,1998,21:43-53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133