全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同植茶年限土壤团聚体全铝和交换态铝的分布特征

DOI: 10.11654/jaes.2015.05.011

Keywords: 植茶年限 土壤团聚体 全铝 交换态铝

Full-Text   Cite this paper   Add to My Lib

Abstract:

为阐明土壤团聚体全铝和交换态铝含量对植茶年限的响应特征,给茶园科学管理提供理论依据,采用野外实地调查和室内分析相结合的方法,以植茶16、23、31、53 a的土壤为研究对象,开展不同植茶年限土壤团聚体全铝和交换态铝的分布特征研究。结果表明:土壤全铝和交换态铝含量均随粒径的减小而升高,且主要分布于<0.25 mm粒径团聚体,分别为86.11~98.35 g·kg-1和62.78~228.85 mg·kg-1;随植茶年限的延长,各粒径团聚体全铝含量逐渐降低;但交换态铝含量有所升高,且在植茶23 a后增幅较大;不同植茶年限土壤团聚体交换态铝表聚现象明显;不同粒径团聚体对土壤全铝和交换态铝的保持和供应能力存在明显差异,全铝和交换态铝有向小粒径团聚体富集的趋势;土壤团聚体对全铝和交换态铝的贡献率分别有49%~79%和44%~73%来自>5 mm粒径团聚体,且在植茶23 a时最高。因此,应注意植茶23 a后0~20 cm土层交换态铝含量的变化

References

[1]  Gao H J, Zhao Q, Zhang X C, et al. Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10):2313-2319.
[2]  Alekseeva T, Alekseev A, Xu R K, et al. Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of Alfisols in Eastern China[J]. Environmental geochemistry and health, 2011, 33(2):137-148.
[3]  任继鹏, 张 逸, 钱 诚, 等. 南方酸性森林土壤中铝的形态分布与活化机理[J]. 环境化学, 2011, 30(6):1131-1135. REN Ji-peng, ZHANG Yi, QIAN Cheng, et al. Fraction distribution and release mechanism of aluminum in acidic forest soils of Southern China[J]. Environmental chemistry, 2011, 30(6):1131-1135.
[4]  吴甫成, 彭世良, 王晓燕, 等. 酸沉降影响下近20年来衡山土壤酸化研究[J]. 土壤学报, 2005, 3(2):219-224. WU Fu-cheng, PENG Shi-liang, WANG Xiao-yan, et al. Soil acidification caused by acid precipitation in MT. Hengshan over last 20 years[J]. Acta Pedologica Sinica, 2005, 3(2):219-224.
[5]  张 倩, 宗良纲, 曹 丹, 等. 江苏省典型茶园土壤酸化趋势及其制约因素研究[J]. 土壤, 2011, 43(5):751-757. ZHANG Qian, ZONG Liang-gang, CAO Dan, et al. Study on soil acidification and its restrictive factors of typical tea garden in Jiangsu Province[J]. Soils, 2011, 43(5):751-757.
[6]  段小华, 邓泽元, 胡小飞, 等. 模拟酸雨和外源铝对茶树铝及一些营养元素吸收积累的影响[J]. 农业环境科学学报, 2010, 29(10):1936-1942. DUAN Xiao-hua, DENG Ze-yuan, HU Xiao-fei, et al. Effects of simulated acid rain and exogenous Al on assimilation and accumulation of Al and some nutrition elements of tea plants[J]. Journal of Agro-Environment Science, 2010, 29(10):1936-1942.
[7]  Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer\'s disease:The integration of the aluminum and amyloid cascade hypotheses[J]. International Journal of Alzheimer\'s disease, 2011, 10:1-17.
[8]  EL-kenawy A E, Osman H E, Eldin H D, et al. Role of propolis(bee glue) in improving histopathological changes of the kidney of rat treated with aluminum chloride[J]. Environmental Toxicology, 2013, 29(9):1000-1010.
[9]  杨建国, 安韶山, 郑粉莉. 宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系[J]. 水土保持学报, 2006, 20(1):72-75. YANG Jian-guo, AN Shao-shan, ZHENG Fen-li. Characteristics of soil water-stable aggregates and relationship with soil properties during vegetation rehabilitation in Ningxia loess hilly region[J]. Journal of Soil and Water Conservation, 2006, 20(1):72-75.
[10]  Yousefi M, Hajabbasi M, Shariatmadari H. Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran[J]. Soil and Tillage Research, 2008, 101(1):57-61.
[11]  Kravchenko A, Chun H C, Mazer M, et al. Relationships between intra-aggregate pore structures and distributions of Escherichia coli within soil macro-aggregates[J]. Applied Soil Ecology, 2013, 63(2):134-142.
[12]  夏建国, 何芳芳, 罗 婉. 蒙山茶园土壤组分对铝的吸附解吸动力学特征的影响[J]. 农业环境科学学报, 2014, 33(2):358-366. XIA Jian-guo, HE Fang-fang, LUO Wan. Effect of kinetics characteristics of aluminum adsorption-desorption by component of tea garden soil in Mengshan[J]. Journal of Agro-Environment Science, 2014, 33(2):358-366.
[13]  Kinraide T. Toxicity factors in acidic forest soils:Attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation[J]. European Journal of Soil Science, 2003, 54(2):323-333.
[14]  刘少坤, 周卫军, 苗霄霖, 等. 茶树根际土壤铝形态演变规律及其影响因素[J]. 土壤, 2014, 46(5):881-885. LIU Shao-kun, ZHOU Wei-jun, MIAO Xiao-lin, et al. Evolvement of aluminum forms and its effect factors in tea rhizospheric soil[J]. Soils, 2014, 46(5):881-885.
[15]  中国科学院南京土壤研究所. 土壤理化分析[M]. 上海:上海科学技术出版社, 1978. Institute of Soil Science, Chinese Academy of Sciences. The soil physical and chemical analysis manual[M]. Shanghai:Shanghai Science and Technology Press, 1978.
[16]  刘灵芝, 邓全道, 许 光, 等. 微波消解样品-电感耦合等离子体原子发射光谱法测定锰矿中铝、镁、磷[J]. 理化检验(化学分册), 2012, 47(11):1283-1285. LIU Ling-zhi, DENG Quan-dao, XU Guang, et al. ICP-AES determination of aluminum, magnesium and phosphorus in manganese ores with microwave assisted sample digestion[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis), 2012, 47(11):1283-1285.
[17]  Xie Z L, Chen Z, Sun W T, et al. Distribution of aluminum and fluoride in tea plant and soil of tea garden in central and southwest China[J]. Chinese Geographical Science, 2007, 17(4):376-382.
[18]  杨 华, 龙 健, 李兆君, 等. 土地利用方式对红枫湖入湖流域土壤团聚体磷含量及其形态的影响[J]. 农业环境科学学报, 2013, 32(11):2214-2220. YANG Hua, LONG Jian, LI Zhao-jun, et al. Effects of land use types on phosphorus forms and their contents in soil aggregates in watershed of Hongfeng Lake[J]. Journal of Agro-Environment Science, 2013, 32(11):2214-2220.
[19]  An S, Mentler A, Mayer H, et al. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China[J]. Catena, 2010, 81(3):226-233.
[20]  夏建国, 何芳芳, 罗 婉, 等. 蒙山茶园土壤组分去除有机质和游离氧化铁后对铝吸附解吸特征的影响[J]. 水土保持学报, 2013, 27(5):125-132. XIA Jian-guo, HE Fang-fang, LUO Wan, et al. Effect of removal of soil organic matter and free iron oxide of soil component on characteristics of aluminum adsorption-desorption from tea garden in Mengshan[J]. Journal of Soil and Water Conservation, 2013, 27(5):125-132.
[21]  李 玮, 郑子成, 李廷轩, 等. 不同植茶年限土壤团聚体及其有机碳分布特征[J]. 生态学报, 2014, 34(21):6326-6336. LI Wei, ZHENG Zi-cheng, LI Ting-xuan, et al. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age[J]. Acta Ecologica Sinica, 2014, 34(21):6326-6336.
[22]  丁瑞兴, 黄 骁. 茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响[J]. 土壤学报, 1991, 28(3):229-236. DING Rui-xing, HUANG Xiao. Biogeochemical cycle of aluminium and fluorine in tea garden soil system and its relationship to soil acidification[J]. Acta Pedologica Sinica, 1991, 28(3):229-236.
[23]  Likens G E. Biogeochemistry of a forested ecosystem[M]. New York:Springer Science & Business, 2013.
[24]  Xie Z M, Ye Z H, Wong M H. Distribution characteristics of fluoride and aluminum in soil profiles of an abandoned tea plantation and their uptake by six woody species[J]. Environment International, 2001, 26(5):341-346.
[25]  Samac D A, Tesfaye M. Plant improvement for tolerance to aluminum in acid soils:A review[J]. Plant Cell, Tissue and Organ Culture, 2003, 75(3):189-207.
[26]  苏有健, 廖万有, 王烨军, 等. 皖南茶园土壤活性铝形态分布与土壤pH和植茶年限的关系[J]. 农业环境科学学报, 2013, 32(4):721-728. SU You-jian, LIAO Wan-you, WANG Ye-jun, et al. Influences of soil pH and cultivation years on active aluminum species distribution from tea soils in Southern Anhui, China[J]. Journal of Agro-Environment Science, 2013, 32(4):721-728.
[27]  张永春, 汪吉东, 沈明星, 等. 长期不同施肥对太湖地区典型土壤酸化的影响[J]. 土壤学报, 2010, 47(3):465-472. ZHANG Yong-chun, WANG Ji-dong, SHEN Ming-xing, et al. Effects of long-term fertilization on soil acidification in Taihu Lake region, China[J]. Acta Pedologica Sinica, 2010, 47(3):465-472.
[28]  曾清如, 廖柏寒, 蒋朝辉, 等. 施用尿素因其红壤pH及铝活性的短期变化[J]. 应用生态学报, 2005, 16(2):249-252. ZENG Qing-ru, LIAO Bo-han, JIANG Zhao-hui, et al. Short-term changes of pH value and Al activity in acid soils after urea fertilization[J]. Chinese Journal of Applied Ecology, 2005, 16(2):249-252.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133