全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电动强化过硫酸钠修复多氯联苯污染土壤的研究

DOI: 10.11654/jaes.2015.05.007

Keywords: 过硫酸钠 电动修复 多氯联苯 土壤修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

选取PCBs实际污染土壤为研究对象,研究了电动增强Na2S2O8氧化修复PCBs污染土壤的效果,同时考察了两端投加、反转电场和碱活化Na2S2O8对土壤中PCBs降解的影响。结果表明,从阴、阳极分别加入10%的Na2S2O8,增大了电流强度和电渗流量,电场能够促进Na2S2O8在土壤中的迁移以及对土壤中PCBs的降解。从土壤中残留PCBs的分布可以看出,电渗流对氧化剂的迁移作用要高于电迁移。由于阴极的去极化作用,反转电场没有促进Na2S2O8对土壤中PCBs的降解。碱活化Na2S2O8对土壤中PCBs的去除效率最高,达28.7%.PCBs的去除率较低跟土壤的异质性和氧化剂的损失有关

References

[1]  Cang L, Fan G P, Zhou D M, et al. Enhanced-electrokinetic remediation of copper-pyrene co-contaminated soil with different oxidants and pH control[J]. Chemosphere, 2013, 90(8):2326-2331.
[2]  Zhou D M, Deng C F, Cang L. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents[J]. Chemosphere, 2004, 56(3):265-273.
[3]  Zhou D M, Deng C F, Cang L, et al. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH[J]. Chemosphere, 2005, 61(4):519-527.
[4]  鲁如坤. 土壤农化分析[M]. 北京:中国农业科技出版社, 2000. LU Ru-kun. Analysis methods of soil agricultural chemistry[M]. Beijing:China Agricultural Science Press, 2000.
[5]  Ferrarese E, Andreottola G, Oprea I A. Remediation of PAH-contaminated sediments by chemical oxidation[J]. Journal of Hazardous Materials, 2008, 152(1):128-139.
[6]  Sperry K, Marley M, Bruell C, et al. Iron catalyzed persulfate oxidation of chlorinated solvents[C]//Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds, F. 2003.
[7]  Waisner S, Medina V F, Morrow A B, et al. Evaluation of chemical treatments for a mixed contaminant soil[J]. Journal of Environmental Engineering, 2008, 134(9):743-749.
[8]  Block P A, Brown R A, Robinson D. Novel activation technologies for sodium persulfate in situ chemical oxidation//Proceedings of the Proceedings of the Fourth International Conference on the remediation of chlorinated and recalcitrant compounds, F, 2004[C].
[9]  赵进英. 零价铁/过硫酸钠体系产生硫酸根自由基氧化降解氯酚的研究[D]. 大连理工大学, 2010. ZHAO Jin-ying. Sulfate radical-based oxidation of chlorophenols using zero-valent iron/sodium peroxydisulfate system[D]. Dalian University of Technology, 2010.
[10]  Liang C J, Lai M C. Trichloroethylene degradation by zero valent iron activated persulfate oxidation[J]. Environmental Engineering Science, 2008, 25(7):1071-1078.
[11]  Saichek R E, Reddy K R. Electrokinetically enhanced remediation of hydrophobic organic compounds in soils:A review[J]. Critical Reviews in Environmental Science and Technology, 2005, 35(2):115-192.
[12]  Fan G P, Cang L, Fang G D, et al. Electrokinetic delivery of persulfate to remediate PCBs polluted soils:Effect of injection spot[J]. Chemosphere, 2014, 117:410-418.
[13]  Roach N, Reddy K R. Electrokinetic delivery of permanganate into low-permeability soils[J]. International Journal of Environment and Waste Management, 2006, 1(1):4-19.
[14]  Rabaey K, Verstraete W. Microbial fuel cells:Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6):291-298.
[15]  You S J, Zhao Q L, Zhang J Q, et al. A microbial fuel cell using permanganate as the cathodic electron acceptor[J]. Journal of Power Sources, 2006, 162(2):1409-1415.
[16]  Li J, Fu Q, Liao Q, et al. Persulfate:A self-activated cathodic electron acceptor for microbial fuel cells[J]. Journal of Power Sources, 2009, 194(1):269-274.
[17]  Liang C J, Lee P-H. Granular activated carbon/pyrite composites for environmental application:Synthesis and characterization[J]. Journal of Hazardous Materials, 2012, 231:120-126.
[18]  Jeffers P M, Ward L M, Woytowitch L M, et al. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes[J]. Environmental Science & Technology, 1989, 23(8):965-969.
[19]  Petri B G, Watts R J, Tsitonaki A, et al. Fundamentals of ISCO using persulfate[M]. In Situ Chemical Oxidation for Groundwater Remediation, Springer, 2011:147-191.
[20]  Travis C C, Hester S T. Global chemical pollution[J]. Environmental Science & Technology, 1991, 25(5):814-819.
[21]  Liang C J, Bruell C J, Marley M C, et al. Persulfate oxidation for in situ remediation of TCE:I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple[J]. Chemosphere, 2004, 55(9):1213-1223.
[22]  Fang G D, Dionysiou D D, Zhou D M, et al. Transformation of polychlorinated biphenyls by persulfate at ambient temperature[J]. Chemosphere, 2013, 90(5):1573-1580.
[23]  Probstein R F, Hicks R E. Removal of contaminants from soils by electric fields[J]. Science, 1993, 260(5107):498-503.
[24]  Acar Y B, Alshawabkeh A N. Principles of electrokinetic remediation[J]. Environmental Science & Technology, 1993, 27(13):2638-2647.
[25]  Isosaari P, Piskonen R, Ojala P, et al. Integration of electrokinetics and chemical oxidation for the remediation of creosote-contaminated clay[J]. Journal of Hazardous Materials, 2007, 144(1):538-548.
[26]  Yang G C, Yeh C-F. Enhanced nano-Fe3O4/S2O82- oxidation of trichloro-ethylene in a clayey soil by electrokinetics[J]. Separation and Purification Technology, 2011, 79(2):264-271.
[27]  Yukselen-Aksoy Y, Reddy K R. Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls[J]. Electrochimica Acta, 2012, 86:164-169.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133