Sutherland J B, Heinze T M, Schnackenberg L K, et al. Biotransformation of quinazoline and phthalazine by Aspergillus niger[J]. Journal of Bioscience and Bioengineering, 2011, 111(3):333-335.
[2]
More T T, Yan S, Tyagi R D, et al. Potential use of filamentous fungi for wastewater sludge treatment[J]. Bioresource Technology, 2010, 101(20):7691-7700.
[3]
Amini M, Younesi H. Biosorption of Cd(II), Ni(II) and Pb(II) from aqueous solution by dried biomass of Aspergillus niger:Application of response surface methodology to the optimization of process parameters[J]. Clean-Soil, Air, Water, 2009, 37(10):776-786.
[4]
Fiedurek J. Production of Aspergillus niger catalase under various stress conditions[J]. Acta Microbial Pollute, 2000, 49(1):43-49.
[5]
Scandalios J G. The rise of ROS trends biochemistry[J]. Science, 2002, 27(9):483-486.
[6]
Abhishek M, Durba D, Sushil K M, et al. Tolerance of arsenate-induced stress in Aspergillus niger, a possible candidate for bioremediation[J]. Ecotoxicology and Environmental Safety, 2010, 73(2):172-182.
[7]
Canovas D, Vooijs R, Schat H, et al. The role of thiol species in the hyper tolerance of Aspergillus niger sp. P37 to arsenic[J]. Biology, Chemistry, 2004, 279:51234-51240.
[8]
Guelfi A, Azevedo R A, Lea P J, et al. Growth in hibition of the filamentous fungus Aspergillus nidulans by cadmium:An antioxidant enzyme approach[J]. Journal of General and Applied Microbiology, 2003, 49, 63-73.
[9]
Banergee B D, Seth V, Bahattacharya A, et al. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers[J]. Toxicology Letters, 1999, 107(1-3):33-47.
[10]
Li Q, Brian M N, Linda M H. Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D[J]. Free Radical Biology & Medicine, 2008, 44(3):394-402.
[11]
Sandalio L M, Dalurzo H C, Gomez M, et al.Cadmium-induced changes in the growth and oxidative metabolism of pea plants[J]. Journal of Experimental Botany, 2001, 52(364):2115-2126.
[12]
江行玉, 赵可夫. 植物重金属伤害及其抗性机理[J]. 应用与环境生物学报, 2001, 7(1):92-99. JIANG Xing-yu, ZHAO Ke-fu. Mechanism of heavy metal injury and risistance of plants[J]. Chinese Journal Applied Environment Biology, 2001, 7(1):92-99.
[13]
Halliwell B, Gutteridg J M C.Free radicals in biology and medicine[D]. 2nded. Clarendon, Oxford, UK, 1989.
[14]
王正秋, 江行玉, 王长海. 铅、镉和锌污染对芦苇幼苗氧化胁迫和抗氧化能力的影响[J]. 过程工程学报, 2002, 2(6):558-563. WANG Zheng-qiu, JIANG Xing-yu, WANG Chang-hai. Effects of Cd and Zn on oxidative stress and antioxidant capacity of Phragmites australis[J]. The Chinese Journal of Process Engineering, 2002, 2(6):558-563.
[15]
Limai A, Corticeior S C, Figuia E. Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum[J]. Enzyme and Microbial Technology, 2006, 39(4):763-769.
[16]
刘 萍, 林乐文, 郑嘉烈, 等. 用高效液相色谱法测定组织中谷胱甘肽[J]. 中国公共卫生, 1995, 10:473-474. LIU Ping, LIN Le-wen, ZHENG Jia-lie, et al. HPLC determination of glutathione in hair tissue[J]. Chinese Journal of Public Health, 1995, 10:473-474.
[17]
卢永科, 川岛明, 堀井郁夫, 等. 顺铂对大鼠肝细胞毒性及谷胱甘肽的保护作用[J]. 中国公共卫生, 2004, 20(2):440-441. LU Yong-ke, KAWASHIMA Akira, HORII Ikuo, et al. Protective effects of glutathione on cisplatin-induced toxicity to rat hepatocytes[J]. Chinese Journal of Public Health, 2004, 20(2):440-441.
[18]
Pocsi L, Prade R A, Penninckx J. Glutathione altruistic metabolite in fungi[J]. Advances in Microbial Physiology, 2004, 49:1-76.
[19]
Schafer F Q, Buettner G R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple[J]. Free Radical Biology and Medicine, 2001, 30(11):1191-1212.
[20]
Hegedüs N, Emri T, Szilágyi J, et al. Effect of heavy metals on the glutathione status in different ectomycorrhizal Paxillus involutus strains[J]. World Journal of Microbiology & Biotechnology, 2007, 23(9):1339-1343
[21]
Jozefczak M, Remans T, Vangronsveld J, et al. Glutathione is a key player in metal-induced oxidative stress defenses[J]. International Journal of Molecular Sciences, 2012, 13(3):3145-3175.
[22]
金春英, 崔京兰, 崔胜云. 氧化型谷胱甘肽对还原型谷胱甘肽清除自由基的协同作用[J]. 分析化学研究简报, 2009, 37(9):1349-1353. JIN Chun-ying, CUI Jing-lan, CUI Sheng-yun. The cooperation of oxidized glutathione to reduced glutathione free radical scavenging synergetic[J]. Chinese Journal of Analytical, 2009, 37(9):1349-1353.
[23]
Droge W. Free radicals in the physiological control of cell function[J]. Physiological Reviews, 2002, 82(1):47-95.
[24]
Jones D P. Redox potential of GSH/GSSG couple:Assay and biological significance[J]. Methods in Enzymology, 2002, 348(11):93-112.
[25]
Kumar A, Prasad M N, Sytar O. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically[J]. Chemosphere, 2012, 89(9):1056-1065.
[26]
宋增延, 姜 宁, 张爱忠, 等. 谷胱甘肽生物学功能的研究进展[J]. 饲料研究, 2008, 9:25-27. SONG Zeng-yan, JIANG Ning, ZHANG Ai-zhong, et al. Advances in the biological function of glutathione[J]. Email Alert, 2008, 9:25-27.
[27]
高 层. 重金属Pb2+和Cu2+对太平洋牡蛎(Crassastrea gigas)毒性效应的比较研究[D]. 青岛:中国海洋大学, 2012. GAO Ceng. Toxic effects of heavy metal Pb2+ and Cu2+ to the Crassostrea gigas[D]. Qingdao:Ocean University of China, 2012.
[28]
Arthur J R. The glutathione peroxidases[J]. Cellular and Molecular Life Sciences, 2000, 57(13/14):1825-1835.
[29]
Shatarupa C B, Abhishek M J, Tapan K D. Biochemical characterization of a lead-tolerant strain of Aspergillus foetidus:An implication of bioremediation of lead from liquid media[J]. International Biodeterioration & Biodegradation, 2013, 84:134-142.
[30]
Foyer C H, Noctor G. Ascorbate and glutathione:The heart of the redox hub[J]. Plant Physiology, 2011, 155(1):2-18.
[31]
Seth C S, RemansT, Keunen E, et al. Phytoextraction of toxic metals:A central role for glutathione[J]. Plant, Cell and Environment, 2012, 35(2):334-346.
[32]
Fu R Y, Chen J, Li Y. The Function of glutathione glutathione peroxidase system in the oxidative stress resistance systems of microbial cells[J]. Chinese Journal of Biotechnology, 2007, 23(5):770-775.
[33]
Iannelli M A, Pietrini F, Fiore L, et al. Antioxidant response to cadmium in Phragmites australis plants[J]. Plant Physiology and Biochemistry, 2002, 40(11):977-982.
[34]
Chen J P, Wang X. Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns[J]. Separation and Purification Technology, 2000, 19(3):157-167.
[35]
Freitas J D, Wintz H, Kim J H, et al. Yeast, a model organism for iron and copper metabolism studies[J]. Biometals, 2003, 16(1):185-197.
[36]
Gomes M P, Duarte D M, Carneior M M, et al. Zinc tolerance modulation in Myracrodruon urundeuva plants[J]. Plant Physiology and Biochemistry, 2013, 67:1-6.
[37]
Li X, Yang Y, Jia L, et al. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants[J]. Ecotoxicology and Environment Safety, 2013, 89:150-157.
[38]
Cristina D C, Pilar D V, Javier R U, et al. Antioxidant defence system during exponential and stationary growth phases of Phycomyces blakesleeanus:Response to oxidative stress by hydrogen peroxide[J]. Fungal Biology, 2013, 117(4):275-287.
[39]
Volesky B. Detoxification of metal-bearing effluents:Biosorption for the next century[J]. Hydrometallurgy, 2001, 59(23):203-216.
[40]
Belozerskaya T A, Gessler N N. Reactive oxygen species and the strategy of the antioxidant defense in fungi:A Review[J]. Prikladnaia Biohimiia I Mikrobiologiia, 2007, 43(5):565-575.
[41]
Gessler N N, Averyanov A A, Belozerskaya T A. Reactive oxygen species in regulation of fungal development[J]. Biochemistry(Moscow), 2007, 72(10):1091-1109.
[42]
Bai Z H, Harvey L M, Mcneil B. Oxidative stress in submerged cultures of fungi[J]. Critical Reviews in Biotechnology, 2003, 23(4):267-302.
[43]
Angelova M B, Pashova S B, Spasova B, et al. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat[J]. Mycological Research, 2005, 109(2):150-158.
[44]
方允中, 郑荣梁. 自由基生物学的理论与应用[M]. 北京:科学出版社, 2002:23-47. FANG Yun-zhong, ZHEN Rong-liang. Theory and application of free radical biology[M]. Beijing:Science Public, 2002:23-47.
[45]
Anjum N A, Ahamad I, Mohmood I, et al. Modulation of glutathione and its related enzymes in plants responses to toxic metals and metalloids:A review[J]. Environment and Experimental Botany, 2012, 75:307-324.
[46]
Wang J L, Chen C. Biosorbents for heavy metals removal and their future[J]. Biotechnology Advances, 2009, 27(2):195-226.
[47]
Luna C M, Gonzalez C A, Tripp V S. Oxidative damage caused by on excels of copper in oat leaves[J]. Plant and Cell Physiology, 1994, 35(1):11-15.