全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

BDE-209对土壤微生物PLFAs特性的影响

DOI: 10.11654/jaes.2015.03.009

Keywords: 十溴联苯醚 土壤微生物 磷脂脂肪酸 土壤环境质量

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用室内模拟方法,分析了不同浓度BDE-209处理对土壤微生物磷脂脂肪酸(Phospholipid fatty acids,PLFAs)组成、含量、微生物群落结构和多样性的影响。结果表明,不同浓度BDE-209胁迫下土壤微生物包括内标19:0在内,共检测出20种磷脂脂肪酸,土壤微生物群落PLFAs种类较丰富,PLFAs组成以饱和脂肪酸为主,其中脂肪酸16:0含量最高,单不饱和脂肪酸、多不饱和脂肪酸、支链脂肪酸和环丙烷脂肪酸含量较少。不同浓度BDE-209会改变微生物的组成与含量,与对照(CK)相比,1.0 mg·kg-1处理可将不同种类PLFAs的增加或降低的程度分为3类,10 mg·kg-1和100 mg·kg-1处理的分为4类,增加程度最大的都是细菌。BDE-209对以PLFAs表征的土壤细菌、真菌、放线菌和总微生物量都有显著的影响,且真菌对BDE-209更敏感,细菌对BDE-209耐受更强,其中革兰氏阴性菌对BDE-209污染的响应较敏感,革兰氏阳性细菌更容易存活,而含16:1ω7t的微生物比含16:1ω7c的微生物抗逆性更强。主成分分析发现,对照、1.0、10 mg·kg-1处理和第一主成分呈显著正相关,100 mg·kg-1处理和第二主成分呈显著正相关,其中第一主成分以含16:0、18:0、18:1ω7t、18:2ω6,9的微生物为优势种群,第二主成分以含i17:0、a15:0的微生物为优势种群。PLFAs表征的土壤微生物量和群落结构对BDE-209的响应敏感,可以作为BDE-209污染下指示土壤环境质量变化的有效生物指标

References

[1]  Jing Y F, Wang X T, Kun Z. Occurrence, compositional patterns, and possible sources of polybrominated diphenyl ethers in agricultural soil of Shanghai[J]. China Chemosphere, 2012, 89:936-943.
[2]  Braune B, Mallory M, Gilchrist H, et al. Levels and trends of organoch-lorines and brominated flame retardants in ivory gull eggs from the Canadian Arctic, 1976 to 2004[J]. Science of the Total Environment, 2007, 378(3):403-417.
[3]  Luo Y, Luo X J, Zhen L, et al. Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China, Concentrations, source profiles, and potential dispersion and deposition[J]. Science of the Total Environment, 2009, 407(3):1105-1113.
[4]  Sverdrup L E, Hartnik T, Mariussen E, et al. Toxicity of three halogenated flame retardants to nitrifying bacteria, red clover(T5 Rifolium pratense), and a soil invertebrate(Enchytraeus crypticus)[J]. Chemosphere, 2006, 64(1):96-103.
[5]  Liu W X, Li W B, Hu J, et al. Sorption kinetic characteristics of polybrominated diphenyl ethers on natural soils[J]. Environmental Pollution, 2010, 158:2815-2820.
[6]  Zhang K, Zhang B Z, Li S M. Regional dynamics of persistent organic pollutants(POPs) in the Pearl River Delta, China:Implications and perspectives[J]. Environmental Pollution, 2011, 159:2301-2309.
[7]  于 树, 汪景宽, 李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报, 2008, 28(9):4221-4227. YU Shu, WANG Jing-kuan, LI Shuang-yi. Effect of long-term fertilization on soil microbial community structure in corn field with the method of PLFA[J]. Acta Ecologica Sinica, 2008, 28(9):4221-4227.
[8]  Liu B R, Jia G M, Chen J, et al. A Review of methods for studying microbial diversity in soils[J]. Pedosphere, 2006, 16(1):18-24.
[9]  赵 帅, 张静妮, 赖 欣, 等. 放牧与围栏内蒙古针茅草原土壤微生物生物量碳、氮变化及微生物群落结构PLFA分析[J]. 农业环境科学学报, 2011, 30(6):1126-1134. ZHAO Shuai, ZHANG Jing-ni, LAI Xin, et al. Analysis of microbial biomass C, N and soil microbial community structure of stipa Steppes using PLFA at grazing and fenced in Inner Mongolia, China[J]. Journal of Agro-Environment Science, 2011, 30(6):1126-1134.
[10]  Schutter M E, Dick R P. Comparison of fatty acid methyl ester(FAME)methods for characterizing microbial communities[J]. Soil Science Society of America Journal, 2000, 64(5):1659-1668.
[11]  Frostegard A, Baath E, Tunlid A. Shift in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry, 1993, 25(6):723-730.
[12]  Yoshitake S, Uchida M, Nakatsubo T, et al. Characterization of soil microflora on a successional glacier foreland in the high Arctic on Ellesmere Island, Nunavut, Canada using phospholipid fatty acid analysis[J]. Polar Bioscience, 2006, 19:73-84.
[13]  廖 敏, 陈雪花, 陈承利. 土壤-青菜系统中铅污染对土壤微生物活性及多样性的影响[J]. 环境科学学报, 2007, 27(2):220-227. LIAO Min, CHEN Xue-hua, CHEN Cheng-li. The influence of lead contamination on soil-microbial activity and community structure diversity in a soil-greengrocery system[J]. Acta Scientiae Circumstantiae, 2007, 27(2):220-227.
[14]  陈振翔, 于 鑫, 夏明芳, 等. 磷脂脂肪酸分析方法在微生物生态学中的应用[J]. 生态学杂志, 2005, 24(7):828-832. CHEN Zhen-xiang, YU Xin, XIA Ming-fang, et al. Application of phospholipid fatty acid(PLFA) analysis in microbial ecology[J]. Chinese Journal of Ecology, 2005, 24(7):828-832.
[15]  许超群. 四溴联苯醚(BDE-47)对菲律宾蛤仔解毒代谢酶基因表达与毒性效应的研究[D]. 青岛:中国海洋大学, 2010. XU Chao-qun. The Primary study on gene expressions and toxic effects of BDE-47 on Venerupis philippinarum[D]. Qingdao:Ocean University of China, 2010.
[16]  宋任芳. 环境中苯基缩水甘油醚和多溴联苯醚的基因和细胞毒性初步研究[D]. 广州:中国科学院研究生院, 2007. SONG Ren-fang. Basic investigation of the genotoxicity and cellular toxicology by environmental phenyl glycidyl ether(PGE) and polybrominated diphenyl ethers(PBDEs) organic pollutants[D]. Guangzhou:the Graduate School of the Chinese Academy of Sciences, 2007.
[17]  蒋 琴. 电子垃圾拆解区域十溴联苯醚污染土壤的植物修复研究[D]. 杭州:浙江大学, 2013. JIANG Qin. The phytoremediation of decabromodiphenyl ether polluted soil in e-waste diamantling area[D]. Hangzhou:Zhejiang University, 2013.
[18]  Calderón F J, Jackson L E, Scow K M, et al. Short-term dynamics of nitrogen, microbial activity, and phospholipid fatty acid after tillage[J]. Soil Science Society of America Journa1, 2001, 65:118-126.
[19]  Mckinley V L, Peacock A D, White D C. Microbial communities PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils[J]. Soil Biology and Biochemistry, 2005, 37(10):1946-1958.
[20]  张新颖. 薦草及其根际对模拟湿地中芘污染的降解机制[D]. 上海:上海大学, 2012. ZHANG Xin-ying. Degradation mechanism of pyrene by scripus triqueter and its rhizosphere in the simulated wetland[D]. Shanghai:Shanghai University, 2012.
[21]  Su Y H, Yang X Y. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil[J]. Science of the Total Environmental, 2009, 407(3):1027-1034.
[22]  Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy meatals[J]. Applied Environmental Microbiol, 1993, 59(11):3605-3617.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133