全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铜绿微囊藻对亚硝态氮的利用

Keywords: 铜绿微囊藻,亚硝态氮,硝态氮,亚硝酸氧化酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过室内培养,研究了不同亚硝态氮浓度对铜绿微囊藻(Microcystisaeruginosa)生长的影响和藻对亚硝态氮的利用,实验分析了水体中亚硝态氮、硝态氮和铵态氮浓度的变化,测定了铜绿微囊藻的生长曲线、藻细胞内亚硝态氮含量和藻亚硝酸氧化酶(NOR)。结果显示,在10mgNO-2-N·L-1的处理组中,培养基中亚硝态氮和硝态氮浓度同时减少,说明铜绿微囊藻可以同时利用亚硝态氮和硝态氮;在20和30mgNO-2-N·L-1的处理组中,随着藻的生长培养基中亚硝态氮的浓度减少,硝态氮浓度增加,而且电泳实验显示此培养条件下铜绿微囊藻能产生亚硝酸氧化酶,表明培养基中的亚硝态氮被亚硝酸氧化酶氧化为硝态氮。本实验也表明高浓度的亚硝态氮(大于10mgNO-2-N·L-1)能够抑制藻的生长。

References

[1]  Vasconcelos V M, Pereira E. Cyanobacteria diversity and toxicity in a wastewater treatment plant( Portugal)[J]. Wat Res, 2001, 35:1354-1357.
[2]  Codd G A. Cyanobacterial toxins, the perception of water quality and the prioritization of eutrophication control[J]. Ecological Engineering, 2000, 16:51-60.
[3]  沈建国.微囊藻 毒素的污染现状,毒性机理和检测方法[J].预防医学情报杂志,:.
[4]  金相灿.中国湖泊环境[M].北京:海洋出版社,1995.1-77.
[5]  孔倩 杨柳燕 肖琳 等.黑暗下不同氮源对铜绿微囊藻生长和pH的影响[J].生态学报,2008,28(5):2060-2064.
[6]  许海 杨林章 刘兆普.铜绿微囊藻和斜生栅藻生长的氮营养动力学特征[J].环境科学研究,2008,21(1):69-73.
[7]  Gil K I, Choi E S. Modelling of inhibition of nitrite oxidation in biological nitritation processes by free ammonia[J]. Biotechol Lett, 2001, 23 : 2021-2026.
[8]  Nijhof M, Klapwijk A. Diffusional transport mechanisms and biofilm nitrification characteristics influencing nitrite levels in nitrifying trickling filter effluents[J]. War Res, 1995, 29(10) :2287-2292.
[9]  Braid W, Ong S K. Decomposition of nitrite under various pH and aeration conditions[J]. Water Air and Soil Pollution, 2000, 118 : 13-26.
[10]  Razumov V A, Tyutyunova F I. Nitrite contamination of the moskva river: causes and effects[J]. Water Resources, 2001, 28 : 324-334.
[11]  Saito K, Hiroshi Ishii, Nishida F. Purification of microcystins by DEAE and C18 cartridge chromatography[J]. Toxicon, 2002, 40:97-101.
[12]  国家环境保护总局.水和废水监测分析方法[M],(第四版)[M].北京:中国环境科学出版社,2002.258-285.
[13]  郭尧君.蛋白质电泳实验技术[M].北京:科学出版社,1999.142.
[14]  Sijbesma W F H, Almeida J S, Reis M A M, et al. Uncoupling effect of nitrite during denitrification by Pseudomonas fluorescens :an in vivo PNMR study[J]. Biotechnol Bioeng, 1996, 52( 1 ) : 176-192.
[15]  Almeida J S, Julio S M, Reis M A M, et al. Nitrite inhibition of denitrification by Pseudomonas fluorescens [J]. Biotechnology and Bioengineering, 1995a, 46: 194-201.
[16]  Rottenberg H. Decoupling of oxidative phosphorylation and photophosphorylation[J]. Biochim Biophys Acta, 1990, 1018: 1-17.
[17]  Hu H, Zhang X. Nitrite utilization by Chaetoceros mulleri under elevated CO2 concentration[J]. World Journal of Microbiology and Biotechnology, 2007, DOI 10. 1007/s11274-007-9553-x.
[18]  Flynn K J, Flynn K. Release of nitrite by marine dinoflagellates:development of a mathematical simulation[J]. Marine Biollgy, 1998, 130: 455-470.
[19]  Floreneio J, Vega J M. Utilization of nitrate, nitrite and ammonium by Chlamydomonas reinhardtii[J]. Planta, 1983, 158 : 288-293.
[20]  Garbayo I, Leon R, Vigara J, et al. Inhibition of nitrate consumption by nitrite in entrapped Chlamydomonas reinhardtii cells[J]. Bioresource Technol, 2002, 81:207-215.
[21]  Brunswick P, Cresswell C F. Nitrite uptake into intact pea chloroplasts. Ⅰ. kinetics and relationship with nitrite assimilation[J]. Plant Physiol, 1988, 86:378-383.
[22]  Neubauer H, Pantel I, Gotz F. Molecular characterization of the nitritereducing system of Staphylococcus carnosus[J]. J Bacteriol, 1999, 181 : 1481-1488.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133