全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同土地利用方式及施肥措施对红壤木质素积累特性的影响

DOI: 10.11654/jaes.2015.09.019

Keywords: 长期施肥 土地利用方式 红壤 木质素 单体 积累特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用碱性氧化铜-固相萃取-气相色谱法将木质素氧化分解为V 类(即香草基酚类,包括香草醛、香草酮和香草酸)、S类(即紫丁香基酚类,包括丁香醛、丁香酮和丁香酸)和C 类(即肉桂基酚类,包括对香豆酸和阿魏酸)单体,以VSC的总和表征土壤中木质素的含量及其在土壤中的积累特性。基于红壤丘陵区的湖南盘塘中低产田改良长期定位试验平台,研究不同土地利用方式下(旱地、水旱轮作地),两种典型长期施肥方式[单施化肥(NPK)、秸秆还田配施化肥(S+NP)]对土壤中木质素各单体含量及组成的影响,同时测定pH、有机质、全量养分、速效养分及多酚氧化酶、过氧化物酶等指标探索影响红壤农田土壤木质素积累的关键因子。结果表明:与试验前本底相比,NPK和S+NP两种长期施肥处理均显著增加红壤农田中木质素VSC三类单体总量,其积累速率表现为水旱轮作地显著高于旱地,在旱地中分别为(8.15±1.39)μg·g-1·a-1和(119.85±3.10)μg·g-1·a-1、水旱轮作地分别为(17.67±0.87)μg·g-1·a-1和(126.48±0.03)μg·g-1·a-1;长期施肥显著增加了红壤中木质素组分中C类单体的比例,其中水旱轮作地中C类单体含量及其占总木质素总量的比例均低于旱地。双因素方差分析表明,土地利用方式、施肥处理均在不同程度上影响土壤养分和酶活性,并对土壤中木质素单体含量产生影响,其中V类与C类单体含量受土地利用方式及施肥处理交互作用的影响显著(P<0.01);相关性分析及冗余分析表明,有机质、氮素(全氮和速效氮,P<0.05)、速效钾(P<0.01)可能是红壤农田木质素积累的关键因子。因此,研究农田培肥管理对贫瘠红壤有机碳截获与转化影响时,应考虑土壤氮素及速效钾对木质素积累的作用

References

[1]  吴金水, 刘守龙, 童成立. 土壤有机质周转计算机模拟原理[J]. 土壤学报, 2003, 40(5):768-773. WU Jin-shui, LIU Shou-long, TONG Cheng-li. Principles in modeling the turnover of soil turnover of soil organic matter using computer simulation[J]. Acta Pedologica Sinica, 2003, 40(5):768-773.
[2]  黄昌勇, 徐建明. 土壤学[M]. 三版. 北京:中国农业出版社, 2010. HUANG Chang-yong, XU Jian-ming. Soil[M]. Third edition. Beijing:China Agriculture Press, 2010.
[3]  Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304:1623-1627.
[4]  吴小丹, 蔡立湘, 鲁艳红, 等. 长期不同施肥制度对红壤性水稻土活性有机质及碳库管理指数的影响[J]. 中国农学通报, 2008, 24(12):28-288. WU Xiao-dan, CAI Li-xiang, LU Yan-hong, et al. Effects of long-term fertilization systems on soil labile organic matter and carbon management index of reddish paddy soil[J]. Chinese Agricultural Science Bulletin, 2008, 24(12):28-288.
[5]  方华军, 杨学明, 张晓平. 农田土壤有机碳动态研究进展[J]. 土壤通报, 2003, 34(6):562-568. FANG Hua-jun, YANG Xue-ming, ZHANG Xiao-ping. The progress of study on soil organic carbon dynamics in cropland[J]. Chinese Journal of Soil Science, 2003, 34(6):562-568.
[6]  Thevenot M, Dignac M F, Rumple C. Fate of lignins in soils:A review[J]. Soil Biology and Biochemistry, 2010, 42(8):1200-1211.
[7]  K?gel I, Bochter R. Characterization of lignin in forest humus layers by high-performance liquid chromatography of cupric oxide oxidation products[J]. Soil Biology and Biochemistry, 1985, 17:637-640.
[8]  Otto A, Simpson M J. Evaluation of CuO oxidation parameters for determining the source and stage of lignin degradation in soil[J]. Biogeochemistry, 2006, 80(2):121-142.
[9]  于 灏, 吴 莹, 张 经, 等. 长江流域植物和土壤的木质素特征[J]. 环境科学学报, 2007, 27(5):817-823. YU Hao, WU Ying, ZHANG Jing, et al. The characteristics of lignin of plant and soil samples in the Yangtze River(Changjiang) Drainage Basin[J]. Acta Scientiae Circumstantiae, 2007, 27(5):817-823.
[10]  Sun T, Li S, Shao M, et al. Effects of long-term fertilization on distribution of organic matters and nitrogen in cinnamon soil macro-aggregates[J]. Agricultural Sciences in China, 2005, 4(11):857-864.
[11]  张电学, 韩志卿, 王秋兵, 等. 长期不同施肥制度下土壤有机质质量动态变化规律[J]. 土壤通报, 2007, 38(2):251-255. ZHANG Dian-xue, HAN Zhi-qing, WANG Qiu-bing, et al. Dynamic change of soil organic matter quality as affected by different long-term fertilization treatments[J]. Chinese Journal of Soil Science, 2007, 38(2):251-255 .
[12]  邱莉萍, 张兴昌, 程积民. 土地利用方式对土壤有机质及其碳库管理指数的影响[J]. 中国环境科学, 2009, 29(1):84-89. QIU Li-ping, ZHANG Xing-chang, CHENG Ji-min. Effects of land-use type on soil organic matter and carbon management index in Ziwuling area[J]. China Environmental Science, 2009, 29(1):84-89.
[13]  Bahri H, Dignac MF, Rumpel C, et al. Lignin turnover kinetics in an agricultural soil is monomer specific[J]. Soil Biology and Biochemistry, 2006, 38(7):1977-1988.
[14]  Andreas B, Klaus K, Georg G. Crop residue management effects on organic matter in paddy soils-the lignin component[J]. Geoderma, 2008, 146:48-57.
[15]  Liu N, He H, Xie H, et al. Impacts of long-term inorganic and organic fertilization on lignin in a Mollisol[J]. Journal of Soils and Sediments, 2010, 10(8):1466-1474.
[16]  Lobe I, Du Preez C, Amelung W. Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld[J]. European Journal of Soil Science, 2002, 53(4):553-562.
[17]  Hofmann A, Heim A, Gioacchini P, et a1. Mineral fertilization did not affect decay of old lignin and SOC in a 13C-labelled arable soil over 36 years[J]. Biogeosciences, 2009, 6:1139-1148.
[18]  赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24):7615-7622. ZHAO Qi-guo, HUANG Guo-qin, MA Yan-qin. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24):7615-7622.
[19]  赵其国. 红壤物质循环及其调控[M]. 北京:科学出版社, 2002:20-21, 130-134. ZHAO Qi-guo. Matter cycling and its regulation and control of red soil[M]. Beijing:Science Press, 2002:20-21, 130-134.
[20]  鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2008. BAO Shi-dan. Soil and agricultural chemistry analysis[M]. Beijing:China Agriculture Press, 2008.
[21]  李振高, 骆永明, 滕 应. 土壤及环境微生物研究方法[J]. 北京:科学出版社, 2008. LI Zhen-gao, LUO Yong-ming, TENG Ying. Soil and environmental microbial research methods[J]. Beijing:Science Press, 2008.
[22]  Hedges J I, Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54:174-178.
[23]  冯书珍, 陈香碧, 董明哲, 等. 长期施肥下亚热带典型农田(旱地)土壤木质素的积累特性[J]. 应用生态学报, 2015, 26(1):93-100. FENG Shu-zhen, CHEN Xiang-bi, DONG Ming-zhe, et al. Effect of long-term fertilization on lignin accumulation in typical subtropical upland soil[J]. Chinese Journal of Applied Ecology, 2015, 26(1):93-100.
[24]  Dalal R, Chan K. Soil organic matter in rainfed cropping systems of the Australian cereal belt[J]. Soil Research, 2001, 39(3):435-464.
[25]  Gong W, Yan X Y, Wang J Y, et al. Long-term manure and fertilizer effects on soil organic matter fractions and microbes under a wheat-maize cropping system in Northern China[J]. Geoderma, 2009, 149(3-4):318-324.
[26]  Galantini J, Rosell R. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampeansoils[J]. Soil and Tillage Research, 2006, 87(1):72-79.
[27]  Rudrappa L, Purakayastha T J, Singh D, et al. Long-term manuring and fertilization effects on soil organic carbon pools in a Typic Haplustept of semi-arid sub-tropical India[J]. Soil and Tillage Research, 2006, 88(1-2):180-192.
[28]  Feng X J, Simpson M J. The distribution and degradation of biomarkers in Alberta grassland soil profiles[J]. Organic Geochemistry, 2007, 38(9):1558-1570.
[29]  Dinis M J, Bezerra R M F, Nunes F. Modification of wheat straw lignin by solid state fermentation with white-rot fungi[J]. Bioresource Technology, 2009, 100(20):4829-4835.
[30]  Huang Y, Freeman K H, Eglinton T I, et al. δ13C analyses of individual lignin phenols in Quaternary Lake sediments:A novel proxy for deciphering past terrestrial vegetation changes[J]. Geology, 1999, 27(5):471-474.
[31]  谷 阳, 刘 宁, 何红波, 等. 不同施肥管理对农田土壤木质素积累的影响[J]. 土壤通报, 2013, 44(6):1470-1476. GU Yang, LIU Ning, HE Hong-bo, et al. The effect of fertilization managements on lignin accumulation in an arable land[J]. Chinese Journal of Soil Science, 2013, 44(6):1470-1476.
[32]  马保国, 杨太新, 郭风台, 等. 麦稻轮作体系中磷素平衡的研究[J]. 农业环境科学学报, 2005, 24(2):371-374. MA Bao-guo, YANG Tai-xin, GUO Feng-tai, et al. Balance of phosphorus in a rotation system with winter wheat and rice[J]. Journal of Agro-Environment Science, 2005, 24(2):371-374.
[33]  范明生, 江荣风, 张福锁, 等. 水旱轮作系统作物养分管理策略[J]. 应用生态学报, 2008, 19(2):424-432. FAN Ming-sheng, JIANG Rong-feng, ZHANG Fu-suo, et al. Nutrient management strategy of paddy rice-upland crop rotation system[J]. Chinese Journal of Applied Ecology, 2008, 19(2):424-432.
[34]  池玉杰, 伊洪伟. 木材白腐菌分解木质素的酶系统-锰过氧化物酶, 漆酶和木质素过氧化物酶催化分解木质素的机制[J]. 菌物学报, 2007, 26(1):153-160. CHI Yu-jie, YI Hong-wei. Lignin degradation mechanisms of ligninolytic enzyme system, manganese peroxidase, laccase and lignin peroxidase, produced by wood white rot fungi[J]. Mycosystea, 2007, 26(1):153-160.
[35]  Lobe I, Du Preez C, Amelung W. Influence of prolonged arable cropping on lignin compounds in sandy soils of the South African Highveld[J]. European Journal of Soil Science, 2002, 53(4):553-562.
[36]  Recous S, Aita C, Mary B. In situ changes in gross N transformations in bare soil after addition of straw[J]. Soil Biology and Biochemistry, 1999, 31(1):119-133.
[37]  巨晓棠, 张福锁. 关于氮肥利用率的思考[J]. 生态环境, 2003, 12(2):192-197. JU Xiao-tang, ZHANG Fu-suo. Thinking about nitrogen recovery rate[J]. Ecology and Environment, 2003, 12(2):192-197.
[38]  Yuan H Z, Ge T D, Wu X H, et al. Long-term field fertilization alters the diversity of autotrophic bacteria based on the ribulose-1, 5-biphosphate carboxylase/oxygenase(RubsCO) large-subunit genes in paddy soil[J]. Applied Microbiology and Biotechnology, 2012, 95(4):1061-1071.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133